Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Events

10 Feb 2026 - 13 Feb 2026
17 Apr 2026 - 21 Apr 2026

Virulence of Bacillus Anthracis Depends on Blood Bicarbonate

By LabMedica International staff writers
Posted on 08 Dec 2008
Scientists have identified bicarbonate as the human blood component that causes the Gram-positive bacteria, Bacillus anthracis, to become virulent.

Bicarbonate is a chemical found in all body fluids and organs that play a major role in maintaining the pH balance in cells, and it provides the signal for B. More...
anthracis to unleash its virulence factors. Without the presence of the bicarbonate transporter in the bloodstream, the bacteria do not become virulent. This finding opens up new avenues of exploration for the development of treatments for other bacterial infections.

The major cause in the increase of community and hospital- acquired bacterial infections are Gram-positive bacteria. The U.S. Centers for Disease Control and Prevention (CDC; Atlanta, GA, USA estimates that as many as 10 % of all patients, or about 2 million people, contract nosocomial infections each year. These bacteria are often resistant to multiple antibiotics, making the problem a growing public health concern and the need for new antibacterial treatment more urgent.

Scripps Research Institute (La Jolla CA, USA) associate professor Marta Perego, Ph.D. and colleagues identified a previously unknown adenosine triphosphate (ATP)-binding cassette transporter (ABC-transporter)--which is identified by the gene number BAS2714-12--that was essential to transporting bicarbonate. ABC-transporters use the energy of ATP hydrolysis to transport various substrates across cellular membranes. When the genes that code for the BAS2714-12 ABC transporter were deleted, the rate of bicarbonate uptake inside the cell greatly decreased, induction of toxin gene expression did not occur, and virulence in an animal model of infection was abolished.

Elimination of carbon dioxide production within the bacterial cell had no effect on toxin production, suggesting that CO2 activity is not essential to virulence factor induction and that bicarbonate, not CO2, was the signal essential for virulence induction.

This finding is significant because other pathogenic bacteria such as Streptococcus pyogenes, Escherichia coli, Borrelia burgdorferi, and Vibrio cholerae have bicarbonate transport pathways similar to B. anthracis and possibly have similar virulence triggering mechanisms.

The study was published in the November 21, 2008 edition of the journal PLoS Pathogens.

Related Links:
U.S. Centers for Disease Control and Prevention
Scripps Research Institute



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.