We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Metagenomic Next-Generation Sequencing Identifies Pathogens Causing CNS Infections

By LabMedica International staff writers
Posted on 12 Jul 2024

Metagenomic next-generation sequencing (mNGS) is a shotgun sequencing method where all the nucleic acid (DNA and RNA) in a clinical sample is sequenced at a very high depth, 10-20 million sequences per sample. More...

This technique is applicable to various clinical samples, including cerebrospinal fluid, plasma, respiratory secretions, urine, stool, or tissue. A single mNGS test can detect sequences from all pathogens—viruses, bacteria, fungi, and parasites—thereby aiding in identifying the potential cause of a patient’s infection. Now, data from a new study underscores the effectiveness and diagnostic capabilities of mNGS in diagnosing infectious diseases such as meningitis, encephalitis, and myelitis in both adults and children.

mNGS technology, originally developed at the University of California, San Francisco (UCSF, San Francisco, CA, USA) and exclusively licensed to Delve Bio (Boston, MA, USA), has been hailed as the future of infectious disease diagnostics, enabling physicians to avoid frustrating cycles of testing for patients battling serious neurological infections. The study analyzed over 4,800 patients who underwent cerebrospinal fluid (CSF) mNGS testing from 2016 to 2023. The results revealed that mNGS identified 797 organisms from 697 out of 4,828 samples (14.4%), encompassing 440 unique pathogenic species. The detection covered DNA and RNA viruses in nearly three-quarters of the cases, along with a wide range of bacteria, fungi, and parasites.

Further analysis and clinical review of more than 1,000 patients treated at UCSF indicated that 21.8% (48 out of 220) of infections were exclusively detected by mNGS. The sensitivity and specificity of CSF mNGS testing in clinically diagnosed infections were 63.1% and 99.6%, respectively, with a positive predictive value (PPV) of 97.1%, and a negative predictive value (NPV) of 92.3%. Comparatively, CSF mNGS demonstrated a higher diagnostic yield (63.1%) than all other forms of direct detection testing from CSF (45.9%), direct detection from non-CSF samples (15.0%), and indirect serologic testing (28.8%).

“Our experience over the seven years at UCSF covered in these studies shows that mNGS delivers the single most conclusive, unbiased and actionable tool for the diagnosis of infectious diseases,” said Charles Chiu, M.D., Ph.D., Delve Bio co-founder and UCSF Professor of Laboratory Medicine and Infectious Diseases and Director of the Clinical Microbiology Laboratory. “These data offer a compelling look at our real-world experience of using mNGS to uncover the cause of difficult-to-diagnose central nervous system infections to guide timely management and treatment for these life-threatening conditions.”

Related Links:
Delve Bio
UCSF


New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gel Cards
DG Gel Cards
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Platelets sequester cfDNA during circulation (Murphy L. et al., Science, 2025; DOI: 10.1126/science.adp3971)

Platelets Could Improve Early and Minimally Invasive Detection of Cancer

Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.