Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Events

10 Feb 2026 - 13 Feb 2026
17 Apr 2026 - 21 Apr 2026

Genomics Approach Helps to Investigate Transmission of Clostridium Difficile

By LabMedica International staff writers
Posted on 02 Jan 2013
Analysis of genomes from patients treated for Clostridium difficile infections was used to investigate how the bacteria were transmitted in hospitals.

The study, which was published on December 21, 2012, in the open access journal Genome Biology, took a genomics approach to assess the incidence of patient-to-patient transmission of C. More...
difficile. The study was supported by the National Institute of Health Research Oxford Biomedical Research Center (Oxford, United Kingdom), a collaboration between Oxford University Hospitals NHS Trust and Oxford University.

A team of scientists sequenced the genomes of C. difficile isolated from 486 patients treated at four hospitals in Oxfordshire (United Kingdom) between 2006 and 2010. Scientists counted the number of genetic differences between different isolates and estimated the mutation rate of the bacteria. They were able to determine the likely time at which any two isolates became genetically separate and thus, whether the two patients in question could have plausibly caught the infection from each other in the hospital. In other words, genetic divergence implies a time-scale that can be used for judging the likelihood of direct transmission.

The results of the study indicated that, although transmission between patients could occur, it actually happens at relatively low frequency. In particular, concerns that healthcare teams were spreading infection between different hospitals seem to be misplaced. One exception to this general finding is that there were a large number of cases of infection from one particular strain that does appear to have been due to patient-to-patient transmission, emphasizing the epidemic nature of this lineage. Notably, this strain has declined in UK hospitals in the last five years.

Dr. Xavier Didelot, the study's lead author, said, "This research opens up very exciting opportunities for better understanding how bacterial infections are spread, and what we can do to stop them. The reduced cost of sequencing whole bacterial genomes means we now have the technology for identifying very recent transmissions of infection. Moreover, we can apply this technology even in cases when infection control teams have no suspicion that routes of contact between patients might exist."

Related Links:

National Institute of Health Research Oxford Biomedical Research Center





Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.