We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




CRISPR-Based Diagnostic Test Detects Pathogens in Blood Without Amplification

By LabMedica International staff writers
Posted on 17 Mar 2025
Print article
Image: The new technology offers rapid, highly sensitive detection of multi-drug-resistant bacteria (Photo courtesy of Adobe Stock)
Image: The new technology offers rapid, highly sensitive detection of multi-drug-resistant bacteria (Photo courtesy of Adobe Stock)

Rapid detection of pathogens is essential for effective disease management, especially in cases of bloodstream infections. Traditional molecular diagnostics often require nucleic acid preamplification, which increases both time and cost. Now, a new technology enables rapid and highly sensitive detection of multi-drug-resistant bacteria and other pathogens, even at low concentrations.

Researchers from the University of Illinois Grainger College of Engineering (Urbana, IL, USA) have developed a CRISPR-based diagnostic test capable of rapidly detecting low levels of pathogen genetic material in blood samples, without the need for nucleic acid amplification. In CRISPR/Cas diagnostic tests, guide RNAs bind to pathogen DNA or RNA, triggering the activation of Cas enzymes that cleave reporter nucleic acids, which fluoresce when cleaved. However, traditional CRISPR-based techniques struggle to detect pathogens at low concentrations without a preamplification step. To address this, the team developed a CRISPR-based test that eliminates the need for amplification by combining two CRISPR/Cas systems into a complex known as CRISPR-Cascade. One part of the system contains a guide RNA specific to the pathogen's nucleic acid, along with a Cas protein. When the Cas protein cleaves specially engineered nucleic acids added to the system, portions of these nucleic acids can bind to and activate a second CRISPR/Cas unit, triggering a positive feedback loop that amplifies the signal, resulting in a high signal-to-noise ratio.

The research, published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), demonstrated unprecedented sensitivity for pathogen detection. It successfully detected multi-drug-resistant Staphylococcus aureus DNA without prior amplification at concentrations significantly lower than the detection limits of tests using a single Cas enzyme. The test provided a straightforward "yes/no" result for the presence of any one of four common bloodstream pathogens in spiked samples. The findings suggest that this approach could lead to the development of highly sensitive, rapid CRISPR-based diagnostic tests capable of detecting pathogens in minutes, without the need for nucleic acid amplification.

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest
New
Creatine Kinase-MB Assay
CK-MB Test

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.