We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Wearable Rapid Gas Analyzer Could Detect Illness Immediately

By LabMedica International staff writers
Posted on 08 Aug 2022
Print article
Image: Associate Professor Yuze “Alice” Sun is creating a wearable device for rapid gas analysis (Photo courtesy of The University of Texas at Arlington)
Image: Associate Professor Yuze “Alice” Sun is creating a wearable device for rapid gas analysis (Photo courtesy of The University of Texas at Arlington)

Advancements in micro-gas chromatography in the past 20 years have demonstrated great potential for the development of powerful portable gas analysis devices. But it remains a challenge to achieve efficient separation and rapid detection for effective gas analysis in a highly integrated and cost-effective platform, as well as in a mobile device. Now, researchers are creating a portable, wearable device for rapid gas analysis that could detect illness immediately.

The device being created by electrical engineering researchers at The University of Texas at Arlington (Arlington, TX, USA) will play an important role in health care, among other sectors. The project will create technology to transform a powerful gas analysis instrument traditionally used in research labs into portable and wearable devices that are easily accepted and accessible by the public. The project has received a USD 550,000 National Science Foundation (NSF) grant from the Partnerships for Innovation–Research Partnerships program, which aims to take devices developed in the laboratory to the marketplace more quickly.

The vast applications could propel the device to the marketplace more quickly. In health care, the device could analyze a person’s breath samples to find chemical markers that are specifically linked to infections, cancers and other health conditions. In turn, that could lead to a convenient and rapid health screening and monitoring tool to be used at home.

“The key to the project is system-level integration, including creating new micro-gas chromatography architecture and using photonic integrated circuits to achieve rapid and comprehensive volatile organic compounds gas analysis,” said Yuze “Alice” Sun, an associate professor in the Department of Electrical Engineering, who is the principal investigator on the project.

“Not only does the project have the potential of improving our lives, but it could take up so much less space than current chromatography analysis machines,” said Diane Huffaker, chair and professor of electrical engineering. “This could save an enormous amount of testing time, too.”

Related Links:
The University of Texas at Arlington 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.