We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Biomarker Test Developed for Chronic Fatigue Syndrome

By LabMedica International staff writers
Posted on 16 May 2019
Print article
Image: A nanoelectronics assay: stressed blood cells could be a biomarker for chronic fatigue (Photo courtesy of The Scientist).
Image: A nanoelectronics assay: stressed blood cells could be a biomarker for chronic fatigue (Photo courtesy of The Scientist).
Myalgic encephalomyelitis, or chronic fatigue syndrome (ME/CFS), is a serious condition that may affect up to 2.5 million people in the USA. Symptoms include extreme tiredness, difficulty sleeping, trouble with thinking and remembering things, muscle pain and aches, a recurring sore throat, and tender lymph nodes.

Currently, physicians can only diagnose ME/CFS by examining a person's symptoms and medical history, and by excluding other possible illnesses. This can make the diagnosis process difficult, lengthy, and inaccurate. A new diagnostic test looks at how a person's immune cells react to stress.

Scientists at the Stanford University School of Medicine (Stanford, CA, USA) have developed a nanoelectronics assay designed as an ultrasensitive assay capable of directly measuring biomolecular interactions in real time, at low cost, and in a multiplex format. The team applied the test to the blood samples of 40 people, 20 of who had ME/CFS and 20 whom did not.

The scientists used a nanoelectronic assay, which measures small changes in energy to assess the health of immune cells and blood plasma, to see how the immune cells and blood plasma process stress. To develop the test, the team took advantage of "advancements in micro/nanofabrication, direct electrical detection of cellular and molecular properties, microfluidics, and artificial intelligence techniques."

The test detects "biomolecular interactions in real time" by using thousands of electrodes to create an electrical current, and by using small chambers that contain blood samples with only immune cells and blood plasma. Inside the small chambers, the immune cells and plasma interact with the electrical current, altering its flow. The scientists used salt to stress the blood samples of some people with ME/CFS and some people without the condition. They then assessed the changes in electrical current. Their test accurately identified all of the people with ME/CFS without misidentifying any of the people who did not have the condition.

The team concluded that they had observed robust impedance modulation difference of the samples in response to hyperosmotic stress can potentially provide a unique indicator of ME/CFS. Moreover, using supervised machine learning algorithms, they developed a classifier for ME/CFS patients capable of identifying new patients, required for a robust diagnostic tool.

Rahim Esfandyarpour, PhD, a Bioengineer and first author of the study, said, “Using the nanoelectronics assay, we can add controlled doses of many different potentially therapeutic drugs to the patient's blood samples and run the diagnostic test again.” The study was published on April 29, 2019, in the journal Proceedings of the National Academy of Sciences.

Related Links:
Stanford University School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.