We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Abbott Diagnostics

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
05 Sep 2020 - 09 Sep 2020
Virtual Venue

White Blood Cell Population May Serve as MS Biomarker

By LabMedica International staff writers
Posted on 29 Jul 2019
Print article
Image: A CyTOF mass cytometer (Photo courtesy of Wikimedia Commons).
Image: A CyTOF mass cytometer (Photo courtesy of Wikimedia Commons).
A discrete population of white blood cells was found to be present in samples taken from patients with multiple sclerosis (MS) and this group of cells may serve both diagnostic and therapeutic roles.

MS is among the class of chronic inflammatory diseases that is modulated by cytokine dysregulation. To better understand the link between cytokines and MS, investigators at the University of Zurich (Switzerland) sought to determine the characteristic cellular and cytokine polarization profile in patients with relapsing–remitting multiple sclerosis (RRMS) by using advanced high-dimensional single-cell mass cytometry (CyTOF).

CyTOF is a mass spectrometry technique based on inductively coupled plasma mass spectrometry and time of flight mass spectrometry used for the determination of the properties of cells (cytometry). In this approach, antibodies are conjugated with isotopically pure elements, and these antibodies are used to label cellular proteins. Cells are nebulized and sent in the form of a mist through an argon plasma, which ionizes the metal-conjugated antibodies. The metal signals are then analyzed by a time-of-flight mass spectrometer. The approach overcomes limitations of spectral overlap in flow cytometry by utilizing discrete isotopes as a reporter system instead of traditional fluorophores, which have broad emission spectra.

The use of CyTOF technology allowed the investigators to identify an expanded T helper cell subset in patients with MS, characterized by the expression of granulocyte–macrophage colony-stimulating factor and the C-X-C chemokine receptor type 4. This cellular signature, which included expression of very late antigen 4 in peripheral blood, was also enriched in the central nervous system of patients with relapsing–remitting multiple sclerosis. In independent validation cohorts, the investigators confirmed that this cell population was increased in patients with MS compared with other inflammatory and non-inflammatory conditions.

"We identified a specific population of white blood cells augmented in the peripheral blood of MS patients that have two properties characteristic of MS: They can move from the blood to the central nervous system and there they can cause inflammation of the nerve cells," said senior author Dr. Burkhard Becher, professor of experimental immunology at the University of Zurich. "Our data clearly indicate a stringent association of this signature to MS, and we believe that the identification of such an easily accessible biomarker brings important value for MS monitoring."

The report was published in the July 22, 2019, online edition of the journal Nature Medicine.

Related Links:
University of Zurich

Print article


Industry News

view channel
Image: ChemWell RPR Analyzer (Photo courtesy of Awareness Technology, Inc.)

Awareness Technology Announces ChemWell RPR Analyzer - The Most Significant Innovation in Syphilis Testing in Last 30 Years

Awareness Technology, Inc. (Palm City, FL, USA) has announced the most significant innovation in syphilis testing in the last 30 years with the launch of the ChemWell RPR automated nontreponemal analyzer... Read more
Copyright © 2000-2020 Globetech Media. All rights reserved.