We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Current-Tunneling Measurements Analyze Single DNA Molecules

By LabMedica International staff writers
Posted on 09 Jul 2018
Print article
Image: An artist\'s depiction of the operating principle of single-molecule sequencing (Photo courtesy of Osaka University).
Image: An artist\'s depiction of the operating principle of single-molecule sequencing (Photo courtesy of Osaka University).
A team of Japanese genomics researchers has devised a method for cancer diagnosis, which is based on the analysis of single molecules of DNA without the need for chemical modification or amplification.

Cancer can be diagnosed by identifying DNA and microRNA base sequences that have the same base length yet differ in a few base sequences, if the abundance ratios of these slightly deviant base sequences can be determined. However, such quantitative analyses cannot be performed using the current DNA sequencers.

In this regard, investigators at Osaka University (Japan) used current-tunneling measurements to determine the entire base sequences of four types of DNA corresponding to the let-7 microRNA, which is a 22-base cancer marker.

The tunneling currents flowing through single molecules were measured by gold electrodes – maintained at a distance of 0.75 nanometers from each other, equivalent to the size of a DNA base molecule – using a mechanically controllable break-junction. Single-molecule signals were obtained in forms of current spikes, whose height represented the electron transport through the molecule. Since this method measured single molecules, it did not require chemical modification of DNA or amplification by PCR.

As the method measured individual DNA molecules, two or more base sequences could be determined by measuring a solution of DNA molecules with two or more types of base sequences. Furthermore, since this method could count the number of DNA molecules that contained a specific base sequence, quantitative analysis could detect the base sequences and determine their frequency.

"Because the single-molecule sequencing method detects differences in the electronic states of molecules in terms of single-molecule conductances, it may also be applied to the analysis of microRNA and RNA molecules that include four base molecules and peptides that include 20 kinds of amino acids," said senior author Dr. Masateru Taniguchi, a professor in the institute of scientific and industrial research at Osaka University. "Also, as the method can detect chemically modified base molecules and amino acids, it represents a substantive step toward realizing personalized genomic diagnosis of cancer and other diseases."

The current-tunneling method was described in a paper published in the June 4, 2018, online edition of the journal Scientific Reports.

Related Links:
Osaka University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.