We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Improved Blood Stabilization Used for CTC Profiling

By LabMedica International staff writers
Posted on 24 Jan 2018
Print article
Image: The Amnis ImageStreamX Mark II imaging flow cytometer (Photo courtesy of the University of Alabama at Birmingham).
Image: The Amnis ImageStreamX Mark II imaging flow cytometer (Photo courtesy of the University of Alabama at Birmingham).
A new blood stabilization method significantly prolongs the lifespan of blood samples for microfluidic sorting and transcriptome profiling of rare circulating tumor cells, living cancer cells carried in the bloodstream.

Recent innovations in rare-cell and molecular technologies are rapidly advancing our ability to isolate and characterize circulating tumor cells (CTCs) for the noninvasive detection and monitoring of cancer. CTC-based liquid biopsy technologies have now expanded into a wide spectrum of applications in precision oncology, including predictive biomarker discovery, understanding mechanisms of drug resistance and metastasis, and personalized testing of drug efficacy.

A large team of physicians and scientists at Massachusetts General Hospital (MGH, Boston, MA, USA) and their colleagues took a comprehensive approach that aims to preserve blood in its native state with minimal alterations. To achieve these goals, the team first systematically analyzed the storage conditions that optimally preserve the viability of the diverse cell types in whole blood. The biggest challenge, it turned out, was platelet activation. The team then analyzed a variety of antiplatelet agents and found that glycoprotein IIb/IIIa inhibitors, which are frequently used in cardiovascular medicine, were extremely effective in countering cooling-induced platelet aggregation.

The team used blood specimens from a group of 10 patients with metastatic prostate cancer, and they compared the use of preserved blood against paired fresh samples from the same patients for CTC analysis. Cell viability, leukocyte activation, and platelet–leukocyte adhesion were studied using the ImageStreamX Mark II imaging flow cytometer. Overall, there was 92% agreement in the detection of 12 cancer-specific gene transcripts between the fresh and the preserved samples, and there was 100% agreement in the detection of a transcript called androgen-receptor splice variant 7 (AR-V7). The team highlighted the universal nature of this stabilization approach by pointing to its compatibility with the highly demanding microfluidic CTC-iChip device, which isolates tumor cells by rapid removal of blood cells, implying the potential impact of this work extends beyond cancer detection.

David Miyamoto, MD, PhD, of the MGH Cancer Center and a co-author of the study, said, “The ability to preserve the blood for several days and still be able to pick up this clinically relevant biomarker is remarkable. This is very exciting for clinicians, because AR-V7 mRNA can only be detected using CTCs and not with circulating tumor DNA or other cell-free assays.” The study was originally published online on November 23, 2017, in the journal Nature Communications.

Related Links:
Massachusetts General Hospital


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.