We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Eurofins Technologies

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
06 Jun 2020 - 09 Jun 2020
Virtual Venue
08 Jun 2020 - 11 Jun 2020
Virtual Venue

Cancer DNA Biomarkers Detected by Lab-On-A-Chip Technique

By LabMedica International staff writers
Posted on 28 Dec 2016
Print article
Image: A microfluidic chip for sample preparation and an optofluidic chip for optical detection of individual molecules (Photo courtesy of Joshua W. Parks).
Image: A microfluidic chip for sample preparation and an optofluidic chip for optical detection of individual molecules (Photo courtesy of Joshua W. Parks).
Miniaturized lab-on-chip approaches are prime candidates for developing viable diagnostic tests and instruments because they are small, need only limited test volumes, and can be cost-effective.

Cancer is the second leading cause of death in the USA, making early, reliable diagnosis and treatment a priority for doctors. Genomic biomarkers offer great potential for diagnostics and new forms of treatment, such as immunotherapy.

A team of scientists and engineers from the University of California, Santa Cruz (CA, USA) and Brigham Young University (Provo, UT, USA) developed an optofluidic analysis system that processes biomolecular samples starting from whole blood and then analyzes and identifies multiple targets on a silicon-based molecular detection platform. Instead of transferring relatively large (micro- to milliliters) samples between test tubes or using bulky analytical equipment, samples and reagents are handled on chip-scale devices with fluidic microchannels. This requires much smaller test volumes, and multiple functions can be integrated on a single device, improving speed, reliability and portability of these laboratory processes.

The scientists demonstrated blood filtration, sample extraction, target enrichment, and fluorescent labeling using programmable microfluidic circuits. They detected and identified multiple targets using a spectral multiplexing technique based on wavelength-dependent multi-spot excitation on an antiresonant reflecting optical waveguide chip. Specifically, they extracted two types of melanoma biomarkers, mutated cell-free nucleic acids, BRAFV600E and NRAS, from whole blood. They detected and identified these two targets simultaneously using the spectral multiplexing approach with up to a 96% success rate.

Holger Schmidt, PhD, a professor of electrical engineering and senior author of the study, said, “Our approach uses optofluidic chips where both fluid processing and optical sensing are done on a chip, allowing for further miniaturization and performance enhancements of the chip system. In the near term, we hope to build new diagnostic instruments for molecular diagnostics with applications in oncology and infectious disease detection, both viruses and (drug-resistant) bacteria.” The study was published in the December 2016 issue of the journal Biomicrofluidics.

Related Links:
University of California, Santa Cruz
Brigham Young University

Print article



view channel
Image: Stenotrophomonas maltophilia colonies on sheep blood agar. Cultivation 48 hours in an aerobic atmosphere, 37 °C (Photo courtesy of microbiologyinpictures).

Global Spread of the Multi-Resistant Pathogen Stenotrophomonas Maltophilia Revealed

Stenotrophomonas maltophilia strains occur in several natural and human associated ecosystems. The bacterium was long regarded as relatively unproblematic, but is now considered to be one of the most feared... Read more
Copyright © 2000-2020 Globetech Media. All rights reserved.