Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Miniature Device to Transform Testing of Blood Cancer Treatments

By LabMedica International staff writers
Posted on 02 Jul 2025

Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for blood cancers like leukemia, offering hope to patients when other treatments fail. More...

However, despite its promise, nearly half of leukemia patients relapse, and many suffer from serious side effects. Efforts to improve CAR T therapies have been hampered by the limitations of conventional testing methods. Traditional models fail to accurately replicate the complex human immune response and the bone marrow environment where leukemia develops. Now, researchers have developed a new solution to bridge this gap—a platform that allows for real-time observation of cancer treatment interactions under controlled conditions, offering a more accurate and patient-specific approach to testing blood cancer therapies.

This innovative platform, termed “leukemia-on-a-chip,” was developed through a collaboration between the Perelman School of Medicine at the University of Pennsylvania (Philadelphia, PA, USA) and the Tandon School of Engineering at New York University (Brooklyn, NY, USA). The device is the first to successfully recreate the physical and immunological environment of human bone marrow on a microscope slide-sized chip. It integrates three distinct bone marrow regions—blood vessels, surrounding marrow cavity, and the outer bone lining—and when seeded with patient-derived cells, it self-organizes to produce structural proteins such as collagen, fibronectin, and laminin. Importantly, the device preserves the immune cell activity within the marrow microenvironment. The system incorporates vascular networks to simulate realistic immune interactions in three dimensions, providing a level of insight and accuracy far beyond 2D cultures or animal models. The development is also timely, coinciding with the FDA’s new roadmap to reduce animal testing requirements in drug development.

In their study published in Nature Biomedical Engineering, the researchers used advanced imaging to watch CAR T cells move through blood vessels, detect cancer cells, and destroy them—processes previously impossible to view with this clarity. They observed that engineered immune cells not only targeted leukemia cells but also activated other immune cells nearby in a “bystander effect” that may explain both therapeutic success and some side effects. The team simulated different patient responses, including remission, relapse, and resistance, and demonstrated that newer, fourth-generation CAR T cells performed better than standard versions, even at lower doses. The chip setup takes just half a day to assemble and supports experiments for up to two weeks, in contrast to animal models that require months. Going forward, the researchers aim to use this platform to test individual patient cancer cells against various treatment designs, enabling a personalized approach to therapy selection before treatment begins.

Related Links:
Perelman School of Medicine
Tandon School of Engineering


New
Gold Member
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Collection and Transport System
PurSafe Plus®
Blood Glucose Test Strip
AutoSense Test
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.