We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Blood Abnormalities Found in People with Long Covid

By LabMedica International staff writers
Posted on 22 Aug 2022
Print article
Image: The Attune NxT Flow Cytometer is ideal for immunophenotyping and signaling studies, cell cycle analysis, detection of rare events, stem cell analysis, cancer and apoptosis studies, microbiological assays and more (Photo courtesy of Thermo Fisher Scientific).
Image: The Attune NxT Flow Cytometer is ideal for immunophenotyping and signaling studies, cell cycle analysis, detection of rare events, stem cell analysis, cancer and apoptosis studies, microbiological assays and more (Photo courtesy of Thermo Fisher Scientific).

SARS-CoV-2 infection can result in the development of a constellation of persistent sequelae following acute disease called post-acute sequelae of COVID-19 (PASC) or Long COVID.

The Long Covid patients, most of them struggling with intense fatigue, brain fog, and other symptoms, had low levels of cortisol, a stress hormone that helps the body control inflammation, glucose, sleep cycles. Long Covid shares certain features with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), another condition thought to follow an infection.

A large group of Imunobiologists at the Yale School of Medicine (New Haven, CT, USA) and their colleagues included 215 individuals in an exploratory, cross-sectional study to perform multi-dimensional immune phenotyping in conjunction with machine learning methods to identify key immunological features distinguishing Long COVID. The Healthy Controls (HC), Convalescent Controls (CC) and Long COVID (LC) groups had samples collected within the Mount Sinai Healthcare System (New York, NY, USA). The Healthcare Workers (HCW) group had samples collected within the Yale New Haven Healthcare System.

Whole blood was collected in sodium-heparin-coated vacutainers from participants at Mount Sinai Hospital. The following methods were implemented: Flow cytometry, prepared for analysis on an Attune NXT (Thermo Fisher Scientific, Waltham, MA, USA); SARS-CoV-2 antibody testing by ELISA plates were read at an excitation/emission wavelength of 450 nm and 570 nm; Multiplex proteomic analysis; Linear Peptide Profiling (Serimmune) and samples were normalized to a final concentration of 4 nM for each pool and run on the NextSeq500 (Illumina, San Diego, CA, USA); Protein-based Immunome Wide Association Study (PIWAS) analysis; IMUNE-based motif discovery; and Rapid Extracellular Antigen Profiling (REAP) and analysis.

The scientists reported that marked differences were noted in specific circulating myeloid and lymphocyte populations relative to matched control groups, as well as evidence of elevated humoral responses directed against SARS-CoV-2 among participants with Long COVID. Further, unexpected increases were observed in antibody responses directed against non-SARS-CoV-2 viral pathogens, particularly Epstein-Barr virus. Analysis of circulating immune mediators and various hormones also revealed pronounced differences, with levels of cortisol being uniformly lower among participants with Long COVID relative to matched control groups. The Long Covid blood samples were also awash with a category of “exhausted” T cells that can be recognized by certain markers they express. Such cells surge in the ongoing presence of pathogens, suggesting the bodies of people with Long Covid are actively fighting something.

The authors concluded that significant biological differences have been identified between participants with Long COVID and demographically and medically matched convalescent and healthy control groups, validating the extensive reports of persistent symptoms by various Long COVID advocacy groups. Unbiased machine learning models further identified both putative biomarkers of Long COVID, as well as potential mediators of Long COVID disease pathogenesis. The study was published on August 10, 2022 in the journal medRxiv.

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Tabletop Centrifuge
Mikro 185

Print article

Channels

Clinical Chemistry

view channel
Image: Rapid and non-invasive analysis of paracetamol overdose using paper arrow-mass spectrometry (Photo courtesy of Dr Simon Maher/University of Liverpool)

New Saliva Test Rapidly Identifies Paracetamol Overdose

Paracetamol is the most widely used medication worldwide, and its easy availability contributes to its frequent misuse and overdose. Overdosing on paracetamol can lead to liver toxicity, requiring hospitalization.... Read more

Molecular Diagnostics

view channel
Image: The study found previously undetected cancers in pregnant women with abnormal prenatal cfDNA test results (Photo courtesy of NIH)

Abnormal Prenatal Blood Test Results Could Indicate Hidden Maternal Cancers

Researchers have discovered previously undiagnosed cancers in 48.6% of pregnant individuals who received abnormal results from prenatal cell-free DNA (cfDNA) testing, which is typically used to screen... Read more

Hematology

view channel
Image: RHD screening just got easier with single exon NIPT testing (Photo courtesy of Devyser)

Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma

RhD (rhesus D) is a blood group type that can trigger immune responses. Individuals who lack RhD on their red blood cells are classified as RhD-negative. These individuals may produce antibodies against... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: A new test finds bacteria in liquids and indicate their presence by changing color (Photo courtesy of Georgia Kirkos/McMaster University)

New Hands-Free Rapid Test Detects Bacteria in Fluids

Bacteriophages, the most abundant form of life on Earth, are specialized to target and destroy specific types of bacteria. Their natural ability to fight bacteria has long been harnessed to treat infections.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.