We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
SINNOWA MEDICAL SCIENCE & TECH

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
23 Jan 2021 - 27 Jan 2021
Virtual Venue
24 Feb 2021 - 28 Feb 2021
Virtual Venue

Molecule in Lymphatic System Implicated in Autoimmune Diseases

By LabMedica International staff writers
Posted on 02 Apr 2020
Print article
Image: Photomicrograph of normal plasma cells from a bone marrow aspirate (Photo courtesy of Peter Anderson).
Image: Photomicrograph of normal plasma cells from a bone marrow aspirate (Photo courtesy of Peter Anderson).
A healthy immune system defends the body against diseases and infection. When someone has an autoimmune disease, the immune system malfunctions and the body mistakenly attacks healthy cells, tissues and organs. Rheumatoid arthritis, lupus and scleroderma are examples of autoimmune diseases.

Non-hematopoietic stromal cells in lymph nodes such as fibroblastic reticular cells (FRCs) can support the survival of plasmablasts and plasma cells together which are antibody-forming cells (AFCs). However, a regulatory function for the stromal compartment in AFC accumulation has not been fully studied.

Scientists at the Hospital for Special Surgery (New York, NY, USA) and their colleagues have shown that chemokine ligand 2 (CCL2)–expressing stromal cells limit AFC survival. FRCs express high levels of CCL2 in vessel-rich areas of the T cell zone and the medulla, where AFCs are located. FRC CCL2 is up-regulated during AFC accumulation, and the team used lymph node transplantation to show that CCL2 deficiency in BP3+ FRCs and lymphatic endothelial cells increases AFC survival without affecting B or germinal center cell numbers.

Monocytes are key expressers of the CCL2 receptor CCR2, as monocyte depletion and transfer late in AFC responses increases and decreases AFC accumulation, respectively. Monocytes express reactive oxygen species (ROS) in an NADPH oxidase 2 (NOX2)–dependent manner, and NOX2-deficient monocytes fail to reduce AFC numbers. Stromal CCL2 modulates both monocyte accumulation and ROS production, and is regulated, in part, by manipulations that modulate vascular permeability.

Theresa T. Lu, MD, PhD, a Professor of Microbiology and Immunology, and senior author of the study, said, “As the immune system is so central to how well our bodies function and often acts in similar ways in a number of different settings, what we are learning about manipulating fibroblasts can also help the biomedical community better understand how to treat related processes, such as healing after a musculoskeletal injury, fighting cancer and fighting infections. For example, medications used in adults and children with different forms of autoimmune inflammatory arthritis or lupus are being examined in the setting of coronavirus infections.” The study was published on March 20, 2020 in the journal Science Immunology.

Related Links:
Hospital for Special Surgery


Print article

Channels

Molecular Diagnostics

view channel
Image: Schematic representation of Chiari malformation type 1; it involves the lower part of the cerebellum known as tonsils, but not the brain stem (Photo courtesy of Healthline).

Common Brain Malformation Traced to Its Genetic Roots

About one in 100 children has a common brain disorder called Chiari 1 malformation, but most of the time such children grow up normally and no one suspects a problem. However about one in 10 of those children,... Read more

Industry

view channel
Image: uPath HER2 Dual ISH image analysis for breast cancer (Photo courtesy of Roche)

Roche Launches Digital Pathology Image Analysis Algorithms for Precision Patient Diagnosis in Breast Cancer

Roche (Basel, Switzerland) has announced the CE-IVD launch of its automated digital pathology algorithms, uPath HER2 (4B5) image analysis and uPath Dual ISH image analysis for breast cancer to help determine... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.