We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Immature Natural Killer Cells Predict Relapse After Cord Blood Transplantation

By LabMedica International staff writers
Posted on 31 Dec 2019
Print article
Image: Schematic diagram of how novel immature natural killer cell subpopulation predicts relapse after cord blood transplantation (CBT) (Photo courtesy of MD Anderson Cancer Center).
Image: Schematic diagram of how novel immature natural killer cell subpopulation predicts relapse after cord blood transplantation (CBT) (Photo courtesy of MD Anderson Cancer Center).
Umbilical cord blood transplantation (CBT) has become an accepted alternative treatment of patients with hematologic cancers or other disorders. Many of the disadvantages of CBT, including limited numbers of total nucleated cells, have been dealt with in significant ways, leading to marked reductions in the time to hematopoietic cell recovery.

Natural killer (NK) cells are highly heterogeneous, with vast phenotypic and functional diversity at the single-cell level. They are involved in the innate immune response against malignant and virus-infected cells. Although the kinetics of T- and B-cell subset recovery after CBT are well-described, much less is known about the recovery of CB-derived natural killer (NK) cells in the post-transplant setting.

Stem transplantation specialists at The University of Texas MD Anderson Cancer Center (Houston, TX, USA) used high-dimensional mass cytometry and the metrics of NK cell diversity to study the NK cell repertoire in serial samples from 43 CBT recipients. A panel comprising 40 metal-tagged antibodies was used for the detailed characterization of NK cells. To assess NK cell cytotoxicity, the team co-cultured NK cells with 51Cr-labeled K562 targets at multiple E:T ratios (20:1, 10:1, 5:1, 1:1); cytotoxicity was measured by target release of 51Cr.

Total RNA was collected from five million NK cells per donor and pooled libraries were sequenced (50-bp paired-end reads generated with the HiSeq 2500 (Illumina, San Diego, CA, USA). Data were acquired on a Helios mass cytometer (Fluidigm, South San Francisco, CA, USA) and fluorescence cytometry data were acquired on BD LSRFortessa X-20 (BD Biosciences, San Jose, CA, USA).

The investigators reported that a higher-diversity index based on single-cell combinatorial phenotypes was significantly associated with a lower risk for relapse after CBT. Cytomegalovirus reactivation was a major factor in the development of a more diverse NK repertoire after CBT. They identified a group of patients whose CB-derived NK cells after transplantation possessed an immature phenotype (CB-NKim), characterized by poor effector function and a low diversity index. Frequencies of CB-NKim of 11.8% or higher during the early post-CBT recovery phase were highly predictive for relapse, a finding that was validated in a second independent cohort of 25 patients. They also showed that the maturation, diversity, and acquisition of effector function by CB-NKim early after CBT were driven by interleukin 15.

The authors concluded that their data indicated that the diversity of the NK cell repertoire after CBT contributes importantly to the risk for subsequent relapse. They suggest that the use of diversity metrics and high-dimensional mass cytometry may be useful tools in predicting clinical outcomes and informing the design of therapeutic strategies to prevent relapse after CBT. The study was published on December 10, 2019 in the journal Blood Advances.

Related Links:
The University of Texas MD Anderson Cancer Center
Illumina
Fluidigm
BD Biosciences


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA
New
Nutating Mixer
Enduro MiniMix

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.