We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Microfluidic Device Rapidly Diagnoses Sepsis

By LabMedica International staff writers
Posted on 15 Aug 2019
Print article
Image: An MIT-invented microfluidics device could help doctors diagnose sepsis, a leading cause of death in US hospitals, by automatically detecting elevated levels of a sepsis biomarker in about 25 minutes, using less than a fingerprick of blood (Photo courtesy of Felice Frankel).
Image: An MIT-invented microfluidics device could help doctors diagnose sepsis, a leading cause of death in US hospitals, by automatically detecting elevated levels of a sepsis biomarker in about 25 minutes, using less than a fingerprick of blood (Photo courtesy of Felice Frankel).
Sepsis is a life-threatening condition and early diagnosis is crucial to ensure that treatment is not delayed. However, as current diagnostic methods are imprecise, the condition is misdiagnosed in 30% of patients.

It is estimated that, each year, sepsis affects over 30 million people around the world. Sepsis may also lead to around six million deaths each year. To prevent sepsis from evolving into septic shock, a complication that makes premature death more likely, doctors have to diagnose it early and act on it quickly. Yet current diagnostic methods are often symptomatic, combined with tests checking for general markers of infection or organ damage.

Bioengineers and their colleagues at Massachusetts Institute of Technology (Cambridge, MA, USA) have developed a microfluidics-based system that automatically detects clinically significant levels of interleukin-6 (IL-6) for sepsis diagnosis in about 25 minutes, using less than a finger prick of blood. In one microfluidic channel, microbeads laced with antibodies mix with a blood sample to capture the IL-6 biomarker. In another channel, only beads containing the biomarker attach to an electrode. Running voltage through the electrode produces an electrical signal for each biomarker-laced bead, which is then converted into the biomarker concentration level.

The device uses about 5 µL of blood, which is about a quarter the volume of blood drawn from a fingerprick and a fraction of the 100 µL required to detect protein biomarkers in laboratory-based assays. The device captures IL-6 concentrations as low as 16 pg/mL, which is below the concentrations that signal sepsis, meaning the device is sensitive enough to provide clinically relevant detection. This suggests that the device is very sensitive to the presence of key biomarkers. More importantly, the scientists argue that the innovative tool is highly adaptable and could be set to detect other sepsis biomarkers, such as interleukin-8, C-reactive protein, and procalcitonin, among others.

Dan Wu, a PhD student in the Department of Mechanical Engineering, and first author of the study said, “For an acute disease, such as sepsis, which progresses very rapidly and can be life-threatening, it’s helpful to have a system that rapidly measures these non-abundant biomarkers. You can also frequently monitor the disease as it progresses.” The study was presented at the Engineering in Medicine and Biology Conference held July 23-27, 2019, in Berlin, Germany.

Related Links:
Massachusetts Institute of Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.