We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Cause of NMO Illuminated by High-Tech Microscope

By LabMedica International staff writers
Posted on 10 May 2017
Print article
Image: Researchers used a custom STED microscope to determine the cause of NMO, an uncommon disease syndrome of the central nervous system (CNS) that affects the optic nerves and spinal cord (Photo courtesy of Dr. William Pawluk).
Image: Researchers used a custom STED microscope to determine the cause of NMO, an uncommon disease syndrome of the central nervous system (CNS) that affects the optic nerves and spinal cord (Photo courtesy of Dr. William Pawluk).
Neuromyelitis optica (NMO), also known as Devic's disease or Devic's syndrome, is a heterogeneous condition consisting of the simultaneous inflammation and demyelination of the optic nerve (optic neuritis) and the spinal cord (myelitis) and it can be monophasic or recurrent.

Determining the spatial relationship of individual proteins in dense assemblies remains a challenge for super-resolution nanoscopy. A unique microscope capable of illuminating living cell structures in great detail has been used to find clues into how this destructive autoimmune disease works, setting the stage for more discoveries in the future.

Biophysicists at the University of Colorado Anschutz Medical Campus used a custom Stimulated Emission Depletion (STED) microscope built at CU Anschutz; they were able to actually see clusters of antibodies atop astrocytes, the brain cell target of the autoimmune response in NMO. They imaged secondary antibody labeling of monoclonal aquaporin-4- immunoglobulin G (AQP4-IgGs) with differing epitope specificity bound to isolated tetramers (M1-AQP4) and large orthogonal arrays of AQP4 (M23-AQP4).

Imaging secondary antibodies bound to M1-AQP4 allowed the team to infer the size of individual AQP4-IgG binding events. This information was used to model the assembly of larger AQP4-IgG complexes on M23-AQP4 arrays. A scoring algorithm was generated from these models to characterize the spatial arrangement of bound AQP4-IgG antibodies, yielding multiple epitope-specific patterns of bound antibodies on M23-AQP4 arrays.

The authors concluded that their results delineate an approach to infer spatial relationships within protein arrays using stimulated emission depletion nanoscopy, offering insight into how information on single antibody fluorescence events can be used to extract information from dense protein assemblies under a biologic context. Jeffrey Bennett, MD, PhD, a professor and senior author of the study, said, “We discovered that we could see the natural clustering of antibodies on the surface of target cells. This could potentially correspond with their ability to damage the cells. We know that once antibody binds to the surface of the astrocyte, we are witnessing the first steps in the disease process.” The study was published on April 25, 2017, issue of the Biophysical Journal.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.