We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Biomarker Identified for Basal-Like Breast Cancer

By LabMedica International staff writers
Posted on 11 Aug 2015
Basal-like breast cancer (BLBC) is an aggressive form of breast cancer and is often referred to as triple negative, which means it is not responsive to the common medical therapeutics, and is more likely to metastasize.

Interleukins (IL) comprise a superfamily of pleiotropically acting cytokines that are present in the tumor microenvironment and are implicated in a wide variety of immunomodulatory functions, including cell maturation, proliferation, migration, and adhesion. More...


Scientists at the Boston University Medical Center (Boston, MA, USA) working in conjunction with those at the University of Cyprus (Nicosia, Cyprus) compared the markers on the surface of the cancer cells to gene expression profile of breast tumors deposited by scientists in international public databases. An unbiased approach using gene expression profiling of a BLBC progression model and in silico leveraging of pre-existing tumor transcriptomes were used to uncover metastasis-promoting genes.

The investigators used various techniques including breast cell cultures; gene expression microarray analysis was followed by in vitro validation and cell migration assays to elucidate the downstream molecular pathways involved in this process. Chemotaxis migration assays were performed and counted by using an Axiovert 200M inverted microscope (Carl Zeiss; Oberkochen, Germany). Real-time polymerase chain reaction (PCR), Western blots and immunological assays were also performed.

The scientists found that a molecule named Interleukin-13 receptor subunit alpha-2 (IL13Rα2) was abundant in metastatic or late-stage BLBC. When they looked at publically available data on patients, they were able to predict the likelihood of progression-free survival based on whether the cancer cells had high levels of IL13Rα2. The group also discovered that a subtype of BLBC that tended to spread to the lungs quickly had high IL13Rα2 levels. High levels of Signal transducer and activator of transcription 6 (STAT6) and Tumor protein p63 (TP63) expression were associated with longer distant metastasis-free survival of patients with breast cancer.

Sam Thiagalingam, PhD, associate professor of genetics and genomics, and coauthor of the study, said, “This discovery offers a glimmer of hope for patients stricken with BLBC. Personalized cancer therapies could be developed by targeting breast cancer cells that express copious levels of IL13Rα2.” The study was published on July 27, 2015, in the journal Breast Cancer Research.

Related Links:

Boston University Medical Center 
University of Cyprus 
Carl Zeiss 



Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Blood Gas and Chemistry Analysis System
Edan i500
New
Calprotectin Assay
Fecal Calprotectin ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Pathology

view channel
Image: AI-analyzed images from the FDM microscope show platelet clumps in motion (Photo courtesy of Hirose et al CC-BY-ND)

AI Microscope Spots Deadly Blood Clots Before They Strike

Platelets are small blood cells that act as emergency responders in the body, rushing to areas of injury to help stop bleeding by forming clots. However, sometimes platelets can overreact, leading to complications.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.