We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Surgical Recovery Correlates with Single-Cell Immune Signatures

By LabMedica International staff writers
Posted on 15 Oct 2014
Print article
Image: The CyTOF Mass Cytometer for High-Dimensional Single Cell Analysis (Photo courtesy of the University of Virginia).
Image: The CyTOF Mass Cytometer for High-Dimensional Single Cell Analysis (Photo courtesy of the University of Virginia).
The activity level of a small set of immune cells during the first 24 hours after surgery provides strong clues to how quickly patients will recover from surgery-induced fatigue and pain.

A highly sensitive technology, called single-cell mass cytometry, enables simultaneous monitoring of large numbers of biochemical features both on the surfaces of immune cells and within the cells, providing information of what kind of cells are present and whether they are active.

Scientists at Stanford University Medical Center (CA, USA) recruited 32 otherwise healthy patients, mostly between ages 50 and 80, who were undergoing first-time hip-replacement procedures. Blood samples from these patients were drawn 1 hour before surgery, then at 1, 24 and 72 hours postsurgery and again four to six weeks after surgery. Cytometric analysis of 35 features in and on each sample's roughly half-million constituent cells yielded profiles of the cells' identities along with key activities underway inside them. Stained cells were analyzed on a CyTOF mass cytometer (DVS Sciences; Sunnyvale, CA, USA) at an event rate of 400 to 500 cells per second.

The simultaneous analysis of 14,000 phosphorylation events in precisely phenotyped immune cell subsets revealed uniform signaling responses among patients, demarcating a surgical immune signature. When regressed against clinical parameters of surgical recovery, including functional impairment and pain, strong correlations were found with signal transducer and activator of transcription (STAT3), adenosine 3′,5′-monophosphate response element–binding protein (CREB) , and nuclear factor κB (NF-κB) signaling responses in subsets of cluster of differentiation 14+ (CD14+) monocytes. The cells in question account for only about 1% to 2% of all the white blood cells found in a typical sample of a healthy person's blood, so the changes within them could easily have been missed had a less-thorough detection technology been employed.

Brice Gaudilliere, MD, PhD, a lead author of the study, said, “If we could predict recovery time before surgery even took place we might be able to see who'd benefit from boosting their immune strength beforehand, or from presurgery interventions such as physical therapy. It might even help us decide when or if a patient should have surgery.” The study was published on September 24, 2014, in the journal Science Translational Medicine.

Related Links:

Stanford University Medical Center
DVS Sciences


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The fastGEN BCR::ABL1 Cancer kit offers a way to personalize treatment strategies for leukemia (Photo courtesy of BioVendor MDx)

First of Its Kind NGS Assay for Precise Detection of BCR::ABL1 Fusion Gene to Enable Personalized Leukemia Treatment

The BCR::ABL1 fusion gene plays a key role in the pathogenesis of several blood cancers, particularly chronic myeloid leukemia (CML). This gene results from a chromosomal translocation that causes constitutive... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.