We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Microchip Invented for Faster, Simpler Type-1 Diabetes Diagnosis, Risk Assessment, and Biomarker Discovery

By LabMedica International staff writers
Posted on 23 Jul 2014
Researchers have succeeded in developing a low-cost, portable, nanotech microchip-based test for diagnosing type-1 diabetes that would speed diagnosis and screening, and enable new approaches to studying how the disease develops.

The type-1 diabetes (T1D) microchip test was invented by a Stanford University (Stanford, CA, USA) team led by Stanford University School of Medicine's Brian Feldman, MD, PhD, assistant professor of pediatric endocrinology, the Bechtel Endowed Faculty Scholar in Pediatric Translational Medicine, and pediatric endocrinologist at Lucile Packard Children’s Hospital Stanford. More...
It distinguishes between the two main forms of diabetes mellitus – T1D, being an autoimmune disease, has auto-antibodies not present with type-2 diabetes (T2D). Until now, making the distinction has required a slow, expensive test available only in sophisticated health-care settings. The new handheld, inexpensive test can be performed outside hospital settings and could improve patient care worldwide; including satisfying a global need in many parts of the world where the old test is prohibitively expensive and difficult to perform. The researchers are seeking US Food and Drug Administration (FDA) approval of the device.

The old, slow test detects the auto-antibodies using radioactive materials, takes several days, can only be performed by highly-trained lab staff, and costs several hundred dollars per patient. In contrast, the new, relatively low-cost microchip method uses no radioactivity, produces results in minutes, and requires minimal training to perform. And each chip, expected to cost about USD 20 to produce, can be used for upward of 15 tests. The microchip also uses a much smaller volume of blood than the older test: instead of a lab-based blood draw it can be done with blood from a finger prick.

“With the new test, not only do we anticipate being able to diagnose diabetes more efficiently and more broadly, we will also understand diabetes better — both the natural history and how new therapies impact the body,” said Prof. Feldman. Better testing is also needed as recent changes in who gets T1D vs. T2D have made it risky to categorize patients based on their age, ethnicity, or weight, as was common in the past due to the sharp distinctions that no longer exist. A cheap handheld test in the doctor’s office would help prevent adult patients from undergoing damaging incorrect treatment due to having been misdiagnosed with T2D. Also, there is growing evidence that early, aggressive new therapies of T1D improves patients’ long-term prognoses, possibly via halting the autoimmune attack on the pancreas and preserving some of the body’s ability to make insulin.

In addition to new diabetics, people who are at risk of developing T1D, such patients’ close relatives, may also benefit as the test will allow doctors to quickly and cheaply track their auto-antibody levels before onset of symptoms. Furthermore, because of its low cost, the test may allow the first broad screening for T1D auto-antibodies to identify those at risk in the population at large. The test would also facilitate testing for volunteers in programs such as "TrialNet," the nationwide USA study that monitors risk of relatives of T1D patients.

“The auto-antibodies truly are a crystal ball,” said Prof. Feldman, “Even if you don’t have diabetes yet, if you have one auto-antibody linked to diabetes in your blood, you are at significant risk; with multiple auto-antibodies, it’s more than 90% risk.” “There is great potential to capture people before they develop the disease,” added Prof. Feldman, “But the old test was prohibitive for that type of thinking because it was so costly and time-consuming.”

The microchip, a plasmonic chip, relies on fluorescence-based antibody detection. The team’s innovation is that the glass plates forming the base of each microchip are coated with an array of nanoparticle-sized islands of gold, which intensify the fluorescent signal, enabling reliable antibody detection. The test was validated using blood samples from people newly diagnosed with diabetes and from people without diabetes. Blood samples from both groups were tested with both the old test and the microchip-based test.

The study, by Zhang B, Kumar RB, Honjie D, and Feldman BJ, was described in the journal Nature Medicine, July 13, 2014 (online ahead of print).


Related Links:

Stanford University

Stanford University School of Medicine




Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultrasonic Cleaner
UC 300 Series
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Pathology

view channel
Image: AI-analyzed images from the FDM microscope show platelet clumps in motion (Photo courtesy of Hirose et al CC-BY-ND)

AI Microscope Spots Deadly Blood Clots Before They Strike

Platelets are small blood cells that act as emergency responders in the body, rushing to areas of injury to help stop bleeding by forming clots. However, sometimes platelets can overreact, leading to complications.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.