We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Strain-Specific Immunity Discovered for Lyme Disease

By LabMedica International staff writers
Posted on 17 Apr 2014
Many patients treated for early Lyme disease incur another infection in subsequent years, suggesting that previous exposure to Borrelia burgdorferi may not elicit a protective immune response.

At least 16 different strains of the Lyme disease bacterium have been shown to infect humans in the United States of America, so being bitten by a tick carrying a different strain of the disease is entirely possible.

Scientists at the University of Pennsylvania (Philadelphia, PA, USA) and their collaborators analyzed the occurrence of identical strains of B. More...
burgdorferi in a cohort of 17 patients with multiple episodes of culture-confirmed erythema migrans. They used both multinomial probability analyses and a stochastic simulation model to evaluate whether only one or fewer of 17 patients could have identical strains of B. burgdorferi in recurrent infections due to chance alone. All analyses estimated the probability of recovering a particular strain of B. burgdorferi from a patient due to chance alone, based on empirical patient data.

The model allowed the researchers to vary assumptions such as the presence or absence of type-specific immunity, the duration of immunity, and the length of time a patient was accessible to having been bitten by a tick, or in other words, the time from the first visit to the clinic to the last visit, or from the first visit to the completion of the study.

The results of all of the simulations indicated that strain-specific immunity would need to last a minimum of four years in order to result in the suite of infections that the 17 patients acquired. When the model parameters were used with actual data from 200 patients who had been infected at least once with a known strain of B. burgdorferi, the simulation indicated that immunity lasts in the range of six to nine years. The only patient infected by the same strain twice actually had Lyme disease four times in six years, contracting K strain twice, five years apart, with an infection by a different strain in between.

The authors concluded that it is highly unlikely that only one of 17 patients would have been infected with an identical strain of B. burgdorferi in a recurrent episode of Lyme disease in the absence of strain-specific immunity. Furthermore, the duration of strain-specific immunity needed to be at least four years to explain the data actually observed. The presence and long duration of strain-specific immunity that the models suggest imply that humans, once infected, are highly unlikely to acquire a subsequent infection caused by the same strain of B. burgdorferi.

The fact that the strain-specific immunity is lasting has implications for vaccine design. Dustin Brisson, PhD, an assistant professor and senior author of the study, said, “If you could make a vaccine that covers several of these strains, you could substantially reduce the probability of infection in vaccinated people. The vaccine could last several years, perhaps requiring a booster once every several years.” The study was published in the April 2014 issue of the journal Infection and Immunity.

Related Links:

University of Pennsylvania



New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Serological Pipet Controller
PIPETBOY GENIUS
New
Automatic Hematology Analyzer
LABAS F9000
New
Staining Management Software
DakoLink
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.