We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Abbott Diagnostics- Hematology Division

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
21 Jun 2021 - 24 Jun 2021

Holographic Histopathology Enables Fast, Precise Diagnostics

By LabMedica International staff writers
Posted on 10 May 2021
Print article
Image: Schematic of the imaging of pathological tissue 3D structure by combining optical diffraction tomography and automated stitching (Photo courtesy of Korea Advanced Institute of Science and Technology)
Image: Schematic of the imaging of pathological tissue 3D structure by combining optical diffraction tomography and automated stitching (Photo courtesy of Korea Advanced Institute of Science and Technology)
Microscopic assessment of biopsied and resected tissues is central to understanding the underlying pathophysiology and clinical states of many patients. Because most microscopic specimens are translucent to visible light, conventional histological methods achieve image contrast using exogenous labels.

Optical diffraction tomography is a microscopy technique for reconstructing the refractive index of a tissue sample from its scattered field images obtained with various illumination angles. It enables label-free high contrast visualization of transparent samples. The complex scattered field transmitted through the sample is first retrieved using off-axis holography, then the scattered fields obtained with various angle of illuminations are mapped in the Fourier space enabling the reconstruction of the sample refractive index.

Bioscientists at the Korea Advanced Institute of Science and Technology (Daejeon, Republic of Korea) and their colleagues developed label-free volumetric imaging of thick-tissue slides, exploiting refractive index distributions as intrinsic imaging contrast. The present method systematically exploited label-free quantitative phase imaging techniques, volumetric reconstruction of intrinsic refractive index distributions in tissues, and numerical algorithms for the seamless stitching of multiple three-dimensional tomograms and for reducing scattering-induced image distortion.

The scientists demonstrated label-free volumetric imaging of thick tissues with the field of view of 2  mm  ×  1.75  mm  ×  0.2  mm with a spatial resolution of 170  nm  ×  170  nm  ×  1,400  nm. The number of optical modes, calculated as the reconstructed volume divided by the size of the point spread function, was ∼20  giga voxels. They have also demonstrated that different tumor types and a variety of precursor lesions and pathologies can be visualized with the present method.

The team demonstrated the capacity of their novel method by imaging a variety of different cancer pathologies: pancreatic neuroendocrine tumor, intraepithelial neoplasia, and intraductal papillary neoplasm of bile duct. They imaged millimeter-scale, unstained, 100-μm-thick tissues at a subcellular 3D resolution, which enabled the visualization of individual cells and multicellular tissue architectures, comparable to images obtained with traditional chemically processed tissues.

YongKuen Park, PhD, a professor and senior author of the study, said, “The images obtained with the proposed method enabled clear visualization of different morphological features in the various tissues allowing for recognition and diagnosis of precursor lesions and pathologies. We expect optical diffraction tomography to provide faster and more precise diagnostics in histopathology and intraoperative pathology consultations.” The study was published on April 29, 2021 in the journal Advanced Photonics.

Related Links:
Korea Advanced Institute of Science and Technology

Gold Supplier
Tumor Marker Control
Tumor Marker Control
COVID-19 Test
Sepsis Detection Test
SeptiCyte RAPID
Influenza A/B Assay
Influenza A+B One Step Assay

Print article
BIOHIT  Healthcare OY


Clinical Chem.

view channel
Image: Blood test for  plasma aldosterone concentration was used to screen For hyperaldosteronism in hypertensive men (Photo courtesy of  VisitHealth Ltd)

Urinary Sodium/Potassium Ratio Screens for Hyperaldosteronism in Hypertensive Men

Among individuals with hypertension, the prevalence of secondary hypertension has been reported to be around 10%. More than half of individuals with secondary hypertension have associated hyperaldosteronism.... Read more


view channel

Global Clinical Chemistry Analyzers Market to Reach USD 15.97 Billion by 2028

The global clinical chemistry analyzers market is projected to grow at a CAGR of 4.25% from USD 11.45 billion in 2020 to USD 15.97 billion by 2028, driven by growth in technology, rising global population,... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.