We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Biochemical Changes in Stored Donor Units Analyzed

By LabMedica International staff writers
Posted on 12 Jul 2018
Print article
Image: The HumaStar 80 clinical chemistry analyzer (Photo courtesy of Human Diagnostics).
Image: The HumaStar 80 clinical chemistry analyzer (Photo courtesy of Human Diagnostics).
Blood transfusion with allogeneic blood products is a common medical intervention to treat anemia or prepare patients for surgical procedures and generally, the blood units are secured and stored prior to expected transfusion.

During storage, several physical and biochemical changes take place in blood products that await transfusion, and the most affected product is whole blood. These changes known collectively as red cell storage lesion are progressive events that affect blood products stored for longer period than products stored for a short period.

Medical Laboratory Scientists at Mbarara University of Science and Technology (Mbarara, Uganda) recruited consecutively a total of 200 blood recipients were categorized into two study arms: group I of 100 received fresh blood and 100 in group II received old blood. A total of 2 mL of venous blood was collected from each participant in EDTA tubes before transfusion for pre-transfusion hemoglobin (Hb) estimation and after transfusion for post-transfusion Hb estimation. Each cross-matched unit was sampled to collect plasma for pH, lactate and potassium assays.

The Hb level was estimated using a Beckman Coulter Diagnostics full hemogram machine; donor lactate level was determined using HumaStar 80; and the potassium and pH in the donor units were determined by Human Diagnostics’ HumaLyte assays. Donor units were cultured in blood agar medium and incubated for 24 hours at 37 °C.

The team reported that the pH of the stored blood dropped from 7.4 to 7.2 in the first three days to ~7.0 by day 11 and to <7.0 by day 35. The mean rise in lactate level was 25 g/dL in blood stored for 0 to 11 days and 32.4 g/dL in blood stored for 21 to 35 days. The highest increase was encountered in blood stored beyond 28 days: 40–57 g/dL by 35 days. Potassium levels equally increased from ~4.6 mmol/L in the first five days of storage to ~14.3 mmol/L by 11 days. From the third week of blood storage and beyond, there was exponential increase in potassium levels, with the highest record in blood units stored from 30 to 35 days.

The authors concluded that whole blood stored for more than 14 days has reduced efficacy with increased markers of red cell storage lesion such as increased potassium level, lactate and fall in pH and these lesions increase the length of hospital stay. The study was published on June 25, 2018, in the Journal of Blood Medicine.

Related Links:
Mbarara University of Science and Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.