We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Compact Photoacoustic Sensing Instrument Enhances Biomedical Tissue Diagnosis

By LabMedica International staff writers
Posted on 15 Feb 2024
Print article
Image: The photoacoustic spectral response sensing instrument is based on low-cost laser diodes (Photo courtesy of Khan et al., doi 10.1117/1.JBO.29.1.017002)
Image: The photoacoustic spectral response sensing instrument is based on low-cost laser diodes (Photo courtesy of Khan et al., doi 10.1117/1.JBO.29.1.017002)

The pursuit of precise and efficient diagnostic methods is a top priority in the constantly evolving field of biomedical sciences. A promising development in this area is the photoacoustic (PA) technique. Over the past decade, PA imaging has gained traction as a practical imaging modality in various clinical settings where it has demonstrated encouraging results. While traditional diagnostic methods are invasive, PA imaging offers a noninvasive alternative for examining biological tissues. However, its broad clinical application has been hampered by the bulkiness and high cost of laser sources. Now, researchers have introduced a groundbreaking, compact, and affordable PA sensing instrument for biomedical tissue diagnosis. Their proof-of-concept study, utilizing cost-effective diode lasers, marks a significant step toward the transition of PA imaging from laboratory research to clinical application.

For the study, researchers from the IIT Indore (Madhya Pradesh, India) focused on the complex nature of breast tissue, specifically fibrocystic changes, which often present diagnostic challenges due to similarities with breast cancer. These changes can cause breast pain and detectable cysts and are frequently found in peritumoral breast parenchyma, complicating diagnoses. Traditional diagnostic methods like ultrasound and mammography sometimes lack the necessary precision, and fine needle aspiration cytology, a common diagnostic tool, often requires additional invasive procedures for confirmation. The PA technique, leveraging laser diodes, generates acoustic waves that provide critical insights into tissue composition and density.

The novel instrument incorporates multiple laser diodes in a compact design, coupled with a custom-built pulsed current supply unit, producing efficient PA excitation with 25 nanosecond pulses at 20 kHz. The researchers were able to distinguish between normal and diseased breast tissues by analyzing the frequency spectra of PA signals. Analyzing the frequency spectra allowed for quantitative tissue assessment. For example, fibrocystic breast disease showed a dominant frequency peak at around 1.60 MHz, suggesting increased tissue density, while normal breast tissue had a lower peak frequency of 0.26 MHz, indicative of its fibrofatty composition.

Histopathological examinations confirmed these observations, aligning spectral responses with tissue characteristics. The experimental setup differentiated tissue types based on quantitative spectral parameters, enhancing diagnostic accuracy and potentially simplifying the sampling process for pathological breast tissues. The compact PA sensing instrument could emerge as a promising tool for clinical practice, offering rapid, reliable, and cost-effective breast disease diagnosis. This breakthrough paves the way for timely interventions and improved patient outcomes, revolutionizing biomedical practices with a cost-effective and rapid tissue diagnosis approach.

Related Links:
IIT Indore

New
Gold Member
Strep Pneumoniae Rapid Test
Strep Pneumoniae (6503 – 6573)
New
Gold Member
Chagas Disease Test
CHAGAS Cassette
New
Malaria Rapid Test
ASSURE Malaria P.f/P.v Rapid Test
New
Cytomegalovirus Assay
Alethia CMV

Print article

Channels

Immunology

view channel

3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response

Tumor heterogeneity presents a major obstacle in the development and treatment of cancer therapies, as patients' responses to the same drug can differ, and the timing of treatment significantly influences prognosis. Consequently, technologies that predict the effectiveness of anticancer treatments are essential in minimizing... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.