We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Abbott Diagnostics- Hematology Division

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

NMR-Based Method Measures Circulating Blood Citrate Levels

By LabMedica International staff writers
Posted on 31 Mar 2021
Print article
Image: The Vantera Clinical Analyzer based on nuclear magnetic resonance (Photo courtesy of Liposcience)
Image: The Vantera Clinical Analyzer based on nuclear magnetic resonance (Photo courtesy of Liposcience)
Recent studies show that citrate is involved in several biological processes such as inflammation, cancer, insulin secretion, acetylation of histones, neurological development and hydroxylglutaric aciduria, indicating that it has functions beyond energy regulation.

Citrate associations with glaucoma, non-alcoholic fatty liver disease (NAFLD), bone disease and mortality have been observed. Monitoring circulating citrate could potentially be a diagnostic tool. While at present, urinary citrate is commonly used as a risk factor in kidney stone formation, serum/plasma citrate is scarcely utilized for disease diagnosis or prognosis.

Laboratorians at the Laboratory Corporation of America Holdings (Labcorp, Morrisville, NC, USA) took blood samples from volunteers in Greiner tubes allowed to clot (30 minutes) in an upright position and centrifuged (3,000 rpm, 10-15 minutes) immediately after clotting. Samples collected into plain red-top tubes and BD Gel Barrier serum tube (Becton Dickinson and Company, Franklin Lakes, NJ, USA) were held upright (red-top tubes for 45 minutes; BD Gel Barrier tubes for 30 minutes) at room temperature to clot and were promptly centrifuged.

Sample preparation (i.e., 1:1 (v/v) dilution of serum or plasma with phosphate buffer) was performed automatically on the Vantera Clinical Analyzer (Liposcience, Raleigh, NC). One-dimensional 1H NMR spectra were collected on a 400 MHz spectrometers at 47 °C. WET was used to suppress the water signal. The total acquisition time for each spectrum was 48 seconds. The NMR instruments are calibrated using 15 mM trimethyl acetic acid as a calibrator and reference standard to verify instrument performance on a daily basis. A restricted region of the collected spectrum, where the four citrate resonances appear, was used for quantification. To determine if the assay has adequate sensitivity to measure clinically relevant concentrations of citrate, the assay was used to quantify citrate in 533 apparently healthy adults, and in the general population (n=133,567).

The team reported that the limit of quantification (LOQ) for the assay was determined to be 1.48 mg/dL. Linearity was demonstrated over a wide range of concentrations (1.40 to 4.46 mg/dL). Coefficients of variation (%CV) for intra- and inter-assay precision ranged from 5.8-9.3 and 5.2-9.6%, respectively. Substances tested did not elicit interference with assay results. Specimen type comparison revealed <1% bias between serum and plasma samples, except for heparin plasma (3% bias). Stability was demonstrated up to eight days at room temperature and longer at lower temperatures. In a cohort of apparently healthy adults, the reference interval was <1.48 to 2.97 mg/dL. Slightly higher values were observed in the general population.

The authors concluded that the newly developed NMR-based assay exhibits analytical characteristics that allow the accurate quantification of clinically relevant citrate concentrations. The assay provides a simple and fast means to analyze samples for clinical and other studies. The study was published on March 18, 2021 in the journal Practical Laboratory Medicine.

Related Links:
Laboratory Corporation of America Holdings
Becton Dickinson and Company

Gold Supplier
Fluorimetric Immunoassay Analyzer
Confiscope F20
Malaria Molecular Detection System
HumaLoop M
Silver Supplier
Immunochromatographic Analyzer
Silver Supplier
Bacteriuria Test Strips
MAST Bacteruritest Strips

Print article


Clinical Chem.

view channel
Image: Illustration is of the Vertical Auto Profile (VAP) Lipid test with clear demarcation of the different lipoprotein classes and subclasses. (Photo courtesy of VAP Diagnostics Laboratory)

Lipoprotein(a) Concentrations Correlate With LDL-C in Diabetic Children

Cardiovascular disease (CVD) is a significant cause of mortality in those with diabetes. Increased apolipoprotein B (apoB) and low-density lipoprotein cholesterol (LDL-C) have been shown in pediatric patients... Read more

Molecular Diagnostics

view channel
Image: Model of the PD-1 (Programmed cell death protein 1) protein. Only a subset of recurrent glioblastomas respond to anti-PD-1 immunotherapy (Photo courtesy of Wikimedia Commons)

Biomarker Predicts Potential Benefit of Checkpoint Inhibitor Therapy for Brain Cancer Patients

A phosphorylated form of ERK (extracellular signal-regulated kinase) protein has been identified as a biomarker that may be used to predict which brain cancer patients might benefit from checkpoint inhibitor... Read more


view channel
Image: The UniCel DxH 800 Coulter Cellular Analysis System (Photo courtesy of Beckman Coulter)

Monocyte Distribution Width Predicts Sepsis in Critically Ill Patients

Sepsis has been reported as a major cause of increased morbidity, length of stay and mortality among patients hospitalized in Intensive Care Units (ICUs) for any cause. The survival of patients developing... Read more


view channel
Image: Procartaplex Immunoassays Kits are based on the principles of a sandwich ELISA, using two highly specific antibodies binding to different epitopes of one protein to quantitate all protein targets simultaneously (Photo courtesy of Thermo Fisher Scientific)

Assay Developed for Patient-Specific Monitoring and Treatment for Ovarian Cancer

Tumors can influence peripheral immune macroenvironment, thereby creating opportunities for non-invasive serum/plasma immunobiomarkers for immunostratification and immunotherapy designing.... Read more


view channel
Image: Clinical metagenomics (CMg) using nanopore sequencing (Photo courtesy of Oxford Nanopore Technologies)

Same Day Test Identifies Secondary Infections in COVID-19 Patients

The intensive care unit (ICU) is a dynamic environment with frequent staff-patient contact for invasive monitoring, interventions and personal care that together introduce the risk of secondary or nosocomial... Read more


view channel
Image: The Ventana BenchMark Ultra autostainer is for cancer diagnostics with automation and the test menu include IHC, ISH, and FITC tests (Photo courtesy of Ventana Medical System)

Specific Biomarker Investigated for Triple-Negative Breast Cancer Diagnosis

Triple-negative breast cancer (TNBC) is defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression and comprises a heterogeneous... Read more


view channel

Global HBA1c Laboratory Tests Market Driven by Rise in Diabetic Population

The global HBA1c laboratory tests market is projected to expand at a significant pace over the coming years, driven by an increase in the prevalence of diabetes, rise in prescription rate of HBA1c tests... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.