We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Fluorescent Sensor Provides Low-Cost Diagnosis of Cystic Fibrosis

By LabMedica International staff writers
Posted on 17 Nov 2016
A new diagnostic test has been developed for cystic fibrosis and the new device provides a cheaper, easier way to detect levels of chloride in sweat, which are elevated in cystic fibrosis patients.

Chloride is an essential electrolyte that maintains homeostasis within the body, where abnormal chloride levels in biological fluids may indicate various diseases such as cystic fibrosis (CF). More...
However, current analytical solutions for chloride detection fail to meet the clinical needs of both high performance and low material or labor costs, hindering translation into clinical settings.

Bioengineers at the Pennsylvania State University (University Park, PA, USA) first developed a citrate-based dye that emits fluorescent light. In the presence of chloride, however, the amount of light given off by the molecule diminishes: the more chloride, the less fluorescence. Sweat from eight healthy and five CF individuals were collected from each arm at a sweat clinic, where sweat from the right arm was analyzed by mercuric nitrate titration.

Absorbance spectra for the new test were recorded on an Infinite M200 Pro UV-vis spectroscopy, and fluorescence spectra were recorded on a FluoroMax-4 fluorospectroscopy at concentrations below 0.1 optical density (OD). After creating a detection system based on this principle, the team compared it to the chloride-detection method currently used in the clinic and found both tests gave similar results. The new test can detect chloride over a wider range of concentrations and, because it's automated, it avoids the problem of human error.

Seila Selimovic, PhD, program director of National Institute of Biomedical Imaging and Bioengineering (Bethesda, MD, USA), said, “This is an important step towards faster, more reliable diagnosis. The new sensing technology is cheap and easy to apply and, if used as part of a point-of-care device may allow more clinics to provide early cystic fibrosis tests. That is a great thing for the developed world, but is a game changer for the economically developing world, since early intervention can save lives in dealing with this devastating and all too common disease.” The study was first published online on August 30, 2016, in the journal Chemical Science.

Related Links:
Pennsylvania State University
National Institute of Biomedical Imaging and Bioengineering

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Portable Electronic Pipette
Mini 96
New
Anterior Nasal Specimen Collection Swabs
53-1195-TFS, 53-0100-TFS, 53-0101-TFS, 53-4582-TFS
New
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.