Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Sensor Tracks Zinc in Cells for Prostate Cancer Diagnosis

By LabMedica International staff writers
Posted on 31 Dec 2013
Mobile zinc is an indispensable component of prostate physiology and the prostate contains more zinc than any other soft tissue in the body, and there is a clear correlation between total prostatic zinc levels and cancer. More...


A new optical sensor that can track zinc in the body's cells has been described and how the sensor fluoresces when it binds to zinc can be targeted to a specific organelle within a cell, enabling the establishment of where the zinc is most concentrated.

Scientists at the Massachusetts Institute of Technology (Cambridge, MA, USA) developed a sensor that relies on Zinpyr1 (ZP1), a molecule originally developed more than 10 years ago. ZP1 is based on a dye called fluorescein, but in the sensor, this is modified to fluoresce only when it binds with zinc. High-resolution mass spectra were resolved using a mass spectrometer (Bruker Daltonics; Billerica, MA, USA). Fluorescence spectra were recorded on a Quanta Master scanning spectrofluorometer (Photon Technology International; Birmingham, NJ, USA).

The investigators could track the location of zinc within cells and gained a better understanding of the role the mineral plays in cancerous cells. The scientists made two changes to the sensor's design. First, they installed a zinc-reacting protecting ring, which changed its physical properties and made it easier to target. They also attached an "address tag" to the ZP1, directing it to the mitochondria. This tag, a derivative of triphenylphosphonium, is both positively charged and hydrophobic. The resulting sensor easily entered the cells, which allowed them to visualize pools of mobile zinc within the mitochondria.

Inside the mitochondria of epithelial prostate cells, zinc is known to inhibit the metabolic enzyme, aconitase. The scientists believe that by blocking aconitase, zinc shortens the citric acid cycle, which are the series of reactions needed to produce adenosine triphosphate (ATP). Most ATP production occurs in the mitochondria, and the MIT team theorized that when prostate cells become cancerous, they banish zinc from there, allowing the cancer cells to produce the extra energy they need to grow and divide. The scientists found that although the cancerous prostate cells absorbed the zinc, it did not collect in the mitochondria.

Robert Radford, PhD, the senior author of the paper said, “We can use these tools to study zinc trafficking within prostate cells, both healthy and diseased. By doing so, we're trying to gain insight into how zinc levels within the cell change during the progression of prostate cancer.” The study was published on December 12, 2013, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:

Massachusetts Institute of Technology
Photon Technology International
Bruker Daltonics 



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gel Cards
DG Gel Cards
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.