We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Biomarkers Identified for Type 2 Diabetes

By LabMedica International staff writers
Posted on 24 Oct 2012
Print article
Novel biomarkers have been identified for type 2 diabetes that can serve as basis for developing new methods of treatment and prevention of this metabolic disease.

Metabolites in the blood have been characterized that will provide insight into the pathological mechanisms of type 2 diabetes and in addition can be used as biomarkers to determine the disease risk.

A scientific team at the German Institute of Human Nutrition (Potsdam-Rehbruecke, Germany) and the Max Delbrueck Center for Molecular Medicine (Berlin, Germany) studied 4,000 blood samples. At the time the blood sample was taken, none of the study participants suffered from type 2 diabetes. However, during the average follow-up time of seven years, 891 participants were diagnosed with type 2 diabetes. There were 76 participants in the study who were already classified at the beginning of the study as individuals at high risk for type 2 diabetes, but at the time the blood sample was taken, they were still healthy.

Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites per blood sample, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of type 2 diabetes. Serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 were associated with decreased risk.

The metabolites significantly improved type 2 diabetes prediction compared with established risk factors. They were further linked to insulin sensitivity and secretion in one study group and were partly replicated in the independent cohort. The data indicate that metabolic alterations, including sugar metabolites, amino acids, and choline-containing phospholipids, are associated early on with a higher risk of type 2 diabetes.

Tobias Pischon, MD MPH, the lead author, said “At the same time the metabolites can also be used as biomarkers to precisely determine the risk of diabetes at a very early stage, since the study is based on prospective data, which is data that were collected before the onset of the disease. The results of the new metabolomic analysis thus provide a good basis for developing new treatment and prevention methods." The study was published on October 4, 2012, in the journal Diabetes.

Related Links:

German Institute of Human Nutrition
Max Delbrueck Center for Molecular Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.