We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Biosensor Measures Oxidative Stress in Living Cells

By Labmedica staff writers
Posted on 28 May 2008
A highly sensitive biologic measuring system has been developed for determining the oxidation state of living cells in real time.

Cancer, nervous system disorders such as Parkinson's disease, cardiovascular disorders, and old age have one thing in common: both in afflicted tissue and in aging cells, scientists have observed oxidative changes in important biomolecules. More...
These are caused by reactive oxygen molecules, including "free radicals” that are formed as a by-product of cellular respiration and attack cellular proteins, nucleic and fatty acids.

Reactive oxygen molecules are also involved in regulating major life processes such as growth and cell death. The right balance between oxidation and the reverse reaction, reduction, makes the difference between health and disease. "Oxidative stress” arises when this balance shifts towards oxidation-promoting processes.

The biosensor, developed by scientists from the German Cancer Research Center (Heidelberg, Germany), specifically measures the oxidation state of glutathione. This is an important protection molecule that captures a large portion of reactive oxygen molecules within a cell by oxidation. If much of a cell's glutathione is present in an oxidized state, this is an important indicator of the cell's overall oxidation level. The investigators equipped test cells with a fluorescent protein that reacts to changes in oxidation level by releasing light signals. Since the fluorescent protein on its own is not sensitive enough, it was coupled with an enzyme called glutaredoxin. This enzyme "measures” the oxidation state of glutathione and transmits the value to the fluorescent protein.

The stress biosensor measured the slightest changes in the oxidation state of glutathione without destroying the cell. Even more relevant, however, is its precise time resolution, as Dr. Tobias Dick, who helped developed the biosensor, explained, "In order to measure short-term variations of oxidation state, the systems need to react instantly and dynamically. This is guaranteed with our biosensor, which works down to the scale of seconds.”


Related Links:
German Cancer Research Center

New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
Sample Transportation System
Tempus1800 Necto
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more

Technology

view channel
Image: The newly designed ExoPatch successfully distinguished melanoma from healthy skin in mice (Photo courtesy of Jeremy Little/Michigan Engineering)

Microneedle Skin Patch Detects Melanoma Without Biopsy or Blood Draw

Melanoma, the most aggressive form of skin cancer, currently requires patients, especially those with fair skin and moles, to undergo regular doctor visits and biopsies every six months to determine if... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.