We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Biochip Developed to Detect Prostate Cancer Cells

By LabMedica International staff writers
Posted on 20 Jun 2018
Print article
Image: A scanning electron micrograph (SEM) of a prostate cancer cell captured on frosted slide with silica nanowires (Photo courtesy of the American Chemical Society).
Image: A scanning electron micrograph (SEM) of a prostate cancer cell captured on frosted slide with silica nanowires (Photo courtesy of the American Chemical Society).
In men with prostate cancer, some tumor cells exit the prostate gland and circulate in the blood. Detecting these cells could enable diagnosis at an earlier stage or help doctors assess whether treatment is effective.

A new type of sensor has been developed that acts like Velcro for prostate cancer cells, sticking them to a modified frosted glass slide, like those used in medical laboratories, so that they can be identified from blood samples. The low-cost method could help doctors better diagnose and monitor the disease.

Scientists at the Chinese Academy of Sciences (Beijing, China) and their colleagues developed a simpler, more cost-effective way to monitor prostate cancer cells in the blood. The team based their device on frosted glass microscope slides. The frosted area, which is used to hold and label the slide, is a sandblasted surface with tiny depressions. They added a solution to the frosted slides that caused silica nanowires to grow on their surfaces, and then they suspended antibodies that recognized prostate cancer cells from the nanowires.

After getting captured by the antibodies, circulating tumor cells became trapped in the depressions on the slide and tangled up within the nanowires, similar to the interlocking surfaces of Velcro. The team could then visualize the cancer cells with microscopy, and found that the device had a capture efficiency on par with other approaches. When the scientists tested blood samples from prostate cancer patients, the devices detected as few as 10 tumor cells in 1 mL of blood.

The biochip showed the specificity and high capture efficiency of 85.4 ± 8.3% for prostate cancer cell line (PC-3). The micro-sized frosted slides and silica nanowires allow enhanced efficiency in capture epithelial cell adhesion molecule (EpCAM) positive cells by synergistic topographic interactions. The capture efficiency of biochip increased with the increase of silica nanowires length on frosted slide. The biochip shows that micro/nanocomposite structures improve the capture efficiency of PC-3 more than 70% compared to a plain slide.

The authors concluded that the nanobiochip has been successfully applied to identify circulating tumor cells (CTCs) from whole blood specimens of prostate cancer patients. Thus, this frosted slide-based biochip may provide a cheap and effective way of clinical monitoring of CTCs. The study was published on May 17, 2018, in the journal ACS Applied Materials & Interfaces.

Related Links:
Chinese Academy of Sciences

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.