We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AI-Based Diagnostic Screening System Predicts Genetics of Cancerous Brain Tumors in 90 Seconds

By LabMedica International staff writers
Posted on 24 Mar 2023
Print article
Image: Artificial intelligence predicts genetics of cancerous brain tumors in under 90 seconds (Photo courtesy of Michigan Medicine)
Image: Artificial intelligence predicts genetics of cancerous brain tumors in under 90 seconds (Photo courtesy of Michigan Medicine)

The diagnosis and treatment of gliomas increasingly rely on molecular classification, as surgical benefits and risks vary depending on a patient's genetic makeup. Complete removal of the tumor can extend the life of patients with astrocytomas, a specific type of diffuse glioma that is the most common and deadly primary brain tumor, by an average of five years compared to other subtypes. However, access to molecular testing for diffuse glioma is limited and not consistently available in all brain tumor treatment centers. Even when available, test results can take days or weeks. Researchers have now developed an artificial intelligence (AI) system that can screen for genetic mutations in cancerous brain tumors in less than 90 seconds, potentially streamlining the diagnosis and treatment of gliomas.

A team of neurosurgeons and engineers at Michigan Medicine (Ann Arbor, MI, USA), in collaboration with other investigators, has developed DeepGlioma, an AI-based diagnostic screening system that uses rapid imaging to analyze tumor specimens taken during an operation and rapidly identify genetic mutations. In a study involving more than 150 patients, the newly developed system demonstrated an average accuracy of over 90% in identifying the mutations used by the World Health Organization to define molecular subgroups of the condition. Prior to the development of DeepGlioma, surgeons did not have a method to differentiate diffuse gliomas during surgery.

“This AI-based tool has the potential to improve the access and speed of diagnosis and care of patients with deadly brain tumors,” said lead author and creator of DeepGlioma Todd Hollon, M.D., a neurosurgeon at University of Michigan Health and assistant professor of neurosurgery at U-M Medical School. “Barriers to molecular diagnosis can result in suboptimal care for patients with brain tumors, complicating surgical decision-making and selection of chemoradiation regimens. DeepGlioma creates an avenue for accurate and more timely identification that would give providers a better chance to define treatments and predict patient prognosis.”

Related Links:
Michigan Medicine 

Flocked Swab
HydraFlock and PurFlock Ultra
Gold Supplier
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
New
Immunoassay Analyzer
DxI 9000
New
POCT Fluorescent Immunoassay Analyzer
FIA Go

Print article

Channels

Clinical Chem.

view channel
Image: Electrochemical cells etched by laser on wooden tongue depressor measure glucose and nitrite in saliva (Photo courtesy of Analytical Chemistry)

Biosensor-Fabricated Wooden Tongue Depressor Measures Glucose and Nitrite in Saliva

Physicians often use tongue depressors to examine a patient's mouth and throat. However, it is hard to imagine that this simple wooden tool could actively assess a patient's health. This idea has led to... Read more

Molecular Diagnostics

view channel
Image: A portable smartphone-based POC device for use with EXTRA-CRISPR method for cancer diagnostics (Photo courtesy of UF Health)

CRISPR-Powered Method for Non-Invasive Blood Tests to Help Diagnose Early Stage Cancer

MicroRNAs, tiny RNA molecules that regulate gene expression, have been identified as potential cancer biomarkers in human fluids like blood. Extracellular vesicles, tiny particles actively discharged by... Read more

Hematology

view channel
Image: The Atellica HEMA 570 and 580 hematology analyzers remove workflow barriers (Photo courtesy of Siemens)

Next-Gen Hematology Analyzers Eliminate Workflow Roadblocks and Achieve Fast Throughput

Hematology testing is a critical aspect of patient care, utilized to establish a patient's health baseline, track treatment progress, or guide timely modifications to care. However, increasing constraints... Read more

Immunology

view channel
Image: Newly observed anti-FSP antibodies have also been found to predict immune-related adverse events (Photo courtesy of Calviri)

First Blood-Based Biomarkers Test to Predict Treatment Response in Cancer Patients

Every year worldwide, lung cancer afflicts over two million individuals and almost the same number of people succumb to the disease. This malignancy leads the charts in cancer-related mortalities, with... Read more

Microbiology

view channel
Image: The rapid MTB strip test for tuberculosis can identify TB patients within two hours (Photo courtesy of Chulalongkorn University)

Rapid MTB Strip Test Detects Tuberculosis in Less Than an Hour without Special Tools

Tuberculosis (TB), a highly infectious disease, continues to pose significant challenges to public health worldwide. TB is caused by a bacterium known as "Mycobacterium tuberculosis," spreading through... Read more

Technology

view channel
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)

Electronic Biosensor Detects Biomarkers in Whole Blood Samples without Addition of Reagents

The absence of robust, reliable, and user-friendly bioanalytical tools for early and timely diagnosis of cardiovascular diseases, particularly sudden cardiac arrest, leads to preventable deaths and imposes... Read more

Industry

view channel
Image: The global hemostasis diagnostics market is expected to reach USD 3.95 billion by 2025 (Photo courtesy of Freepik)

Global Hemostasis Diagnostics Market Driven by Increase in Invasive Surgical Procedures

Injury or surgery naturally creates bleeding in living beings, which must be stopped to prevent excessive blood loss. The human body implements a protective mechanism known as hemostasis to stop excessive bleeding.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.