We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Faulty Genetic Instructions Drive Deadly Leukemia in Adults

By LabMedica International staff writers
Posted on 06 Jul 2016
Acute myeloid leukemia is one of the most common acute leukemia or blood cancer types in adults, and involves over-production of immature blood cells that then crowd out normal, healthy cells.

It is estimated there are nearly 20,000 new cases diagnosed and more than 10,000 deaths in the USA each year and studies have found that just close to 23% of people with the disease live five years once diagnosed.

Scientists at the Lineberger Comprehensive Cancer Center (Chapel Hill, NC, USA) and their colleagues have discovered how a set of faulty genetic instructions keep blood stem cells from maturing, a finding that further explains the development of acute myeloid leukemia (AML). They reveal how a mutation in the gene DNMT3A, which has been found in approximately 20% to 30% of cases of AML, gives normal cells faulty genetic instructions that contribute to the development of cancerous cells.

They also found that while the DNMT3A mutation is required for acute leukemia development, the mutation itself is not sufficient to cause cancer alone. Instead, they found that the mutation cooperates with another genetic defect in a gene called rat sarcoma (RAS) to drive cancer. They found AML cells with the DNMT3A mutation were sensitive to specific drug inhibitors of DOT1-Like Histone H3K79 Methyltransferase (DOT1L), a cellular enzyme involved in modulation of gene expression activities. As DOT1L inhibitors are currently under clinical evaluation, this translational finding suggests a potential personalized strategy for treating the human AML carrying DNMT3A mutation.

Rui Lu, PhD, the lead author of the study, said, “We found the RAS mutation stimulates these immature blood cells to be hyper-proliferate, however, these cells cannot maintain their stem cell properties, while the DNMT3A mutation itself does not have hyper-proliferative effects, but does promote stemness properties and generates leukemia stem/initiating cells together with the RAS mutation.” The study was published on June 23, 2016, in the journal Cancer Cell.

Related Links:
Lineberger Comprehensive Cancer Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)

Groundbreaking CRISPR Screen Technology Rapidly Determines Disease Mechanism from Tissues

Thanks to over a decade of advancements in human genetics, scientists have compiled extensive lists of genetic variations linked to a wide array of human diseases. However, understanding how a gene contributes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.