We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




AI-Driven Tool to Accelerate Cancer Diagnosis

By LabMedica International staff writers
Posted on 18 Feb 2025
Print article
Image: Michelle Lo (right), the primary developer of CytoMAD in this project, alongside Professor Kevin Tsia (left), the research team leader (Photo courtesy of HKU)
Image: Michelle Lo (right), the primary developer of CytoMAD in this project, alongside Professor Kevin Tsia (left), the research team leader (Photo courtesy of HKU)

In order to address the challenge of low visibility when examining cell samples under a microscope, medical professionals typically use staining and labeling techniques. However, this process is not only time-consuming but also costly. As a result, patients often face delays in receiving the results of their cell analysis, such as blood sample tests. Another significant issue is the "batch effect," which refers to technical variations across different experimental batches and conditions, such as changes in instrument settings or image acquisition protocols. These variations can hinder the accurate biological interpretation of cell morphology. Existing solutions, including machine learning-based approaches, often rely on specific prior knowledge or assumptions about the data, making them less adaptable and harder to implement in diverse applications. Researchers have now developed an AI-driven imaging tool that enables faster and more accurate diagnosis of cancer patients, significantly improving the effectiveness of their treatment.

In collaboration with other institutions, researchers from the University of Hong Kong (HKU, Hong Kong) successfully demonstrated their latest generative AI method, Cyto-Morphology Adversarial Distillation (CytoMAD), on lung cancer patients and drug tests. Combined with their proprietary microfluidic technology, CytoMAD facilitates fast, cost-effective, "label-free" imaging of human cells. This innovation enables clinicians to assess tumors at the precision of individual cells and determine if the patient is at risk for metastasis. Published in the journal Advanced Science, the study highlights how CytoMAD uses AI to automatically correct inconsistencies in cell imaging, enhance cell images, and extract previously undetectable details. This comprehensive capability of CytoMAD ensures reliable and accurate data analysis and diagnosis. The technology holds the potential to revolutionize cell imaging, providing critical insights into cell properties and related health and disease information.

A significant advantage of this AI technology is its label-free nature, which simplifies the preparation of patient or cell samples. This reduces time and labor, enhancing the speed and efficiency of diagnosis and drug discovery. CytoMAD also enables simultaneous label-free image contrast translation, revealing additional cellular details. Moreover, this novel approach addresses the issue of the "batch effect." The deep-learning model is supported by ultra-fast optical imaging technology, developed by the same research team. While lung cancer remains one of the most lethal cancers globally and a top cancer risk, CytoMAD’s utility is not limited to lung cancer patients. The technology could streamline drug screening processes, thanks to the time-saving "label-free" method, alongside its advantages in high-speed imaging and diagnostic capabilities powered by generative AI. Looking ahead, a key goal is to further train the model to help medical practitioners predict cancer and other diseases in potential patients.

“A classical bright-field cell image typically looks like a vague photo full of scattered fainted blobs – nowhere close to informative for meaningful analysis of the cell properties and thus the related health and disease information,” said Dr. Michelle Lo, the main developer of CytoMAD in this project. “Nevertheless, CytoMAD, as generative AI model, can be trained to extract the information related to mechanical properties and molecular information of cells that was undetectable to the human eye in a brightfield image. In other words, we could uncover important properties of cells that underpin cell functions, bypassing the use of standard fluorescence markers and their limitations in costs and time.”

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Fixed Speed Tube Rocker
GTR-FS
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Molecular Diagnostics

view channel
Image: Health Canada has approved SPINEstat, a first-in-class diagnostic blood test for axSpA, as a Class II medical device (Photo courtesy of Augurex)

First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis

Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.