We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Model Excels at Analyzing Diverse Cancer Types and Unseen IHC Data

By LabMedica International staff writers
Posted on 18 Dec 2024
Print article
Image: The Lunit SCOPE uIHC Universal Immunohistochemistry (uIHC) AI model (Photo courtesy of Lunit)
Image: The Lunit SCOPE uIHC Universal Immunohistochemistry (uIHC) AI model (Photo courtesy of Lunit)

Immunohistochemistry (IHC) plays a crucial role in oncology, allowing pathologists to detect and quantify protein expression, which informs decisions for systemic therapy. Despite the existence of several AI algorithms to assist in scoring IHC images and improving diagnostic accuracy, current AI models face significant challenges, including data dependency and a lack of generalization. These AI-IHC models require large datasets of immunostain-specific images for training, which are often difficult to obtain, especially for newly developed immunostain-target pairs. Furthermore, these models struggle to analyze datasets that differ from their training set in terms of immunostain or cancer types, limiting their effectiveness across diverse clinical indications. These limitations highlight the need for scalable AI solutions capable of providing accurate analysis across a broad range of cancer types and immunostains. A new study has now demonstrated how an artificial intelligence (AI) model can excel at analyzing diverse cancer types and IHC stains, including datasets it had never previously encountered, due to an innovative training approach.

Lunit (Seoul, South Korea) has developed the Universal Immunohistochemistry (uIHC) AI model, now commercialized as Lunit SCOPE uIHC, which enables advanced biomarker analysis from even singleplex IHC, including subcellular stain localization, continuous intensity scoring, and cell type identification. In a study, Lunit compared eight deep learning models, including four single-cohort models (trained using data from a single stain or cancer type) and four multi-cohort models (trained on datasets that span multiple stains and cancer types), to assess their performance on both familiar and unseen datasets. The results, published in npj Precision Oncology, demonstrated that the uIHC model can generalize across diverse datasets with high accuracy.

The findings underscore the model's strong performance across a wide array of cancer types and immunostains, including those it had not been trained on. The uIHC model’s ability to generalize across different IHC images represents a significant advancement in digital pathology. By reducing the need for large, stain-specific datasets, this model facilitates scalable and efficient biomarker analysis, which is crucial for clinical diagnostics and drug development. This capability is particularly beneficial in evaluating new biomarkers related to emerging therapies, helping to address a major bottleneck in precision oncology.

"Our Universal Immunohistochemistry AI model solves a practical bottleneck in development settings—handling unseen cancer types and stains without requiring additional data annotation," said Brandon Suh, CEO of Lunit. "By proving the effectiveness of a multi-cohort training approach, this study shows how AI can be adapted to real-world complexities, delivering both precision and scalability. With the launch of Lunit SCOPE uIHC, we're enabling researchers and clinicians to focus on what truly matters: advancing patient care and accelerating therapeutic innovation."

Related Links:
Lunit

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Epstein-Barr Virus Test
Mononucleosis Rapid Test
New
Chagas Disease Test
LIAISON Chagas

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.