We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI-Powered Immuno-Oncology Tool Predicts Lung Cancer Treatment Outcomes

By LabMedica International staff writers
Posted on 02 Dec 2024
Print article
Image: HistoTME reads routinely stained histopathology images of tumor samples (Photo courtesy of Adobe Stock)
Image: HistoTME reads routinely stained histopathology images of tumor samples (Photo courtesy of Adobe Stock)

Immune checkpoint inhibitors (ICI) are used to treat non-small cell lung cancer (NSCLC) by enhancing the immune system's ability to fight cancer. However, identifying which patients will benefit most from this treatment remains a challenge. Now, advancements in artificial intelligence (AI) and diagnostic tools offer the potential to enhance treatment outcomes and survival rates for NSCLC patients by helping doctors more accurately predict their response to ICI therapy.

Researchers at SUNY Upstate Medical University (Syracuse, NY, USA) have developed HistoTME, an affordable and easy-to-implement AI tool. This advanced deep learning algorithm analyzes routinely stained histopathology images of tumor samples to predict molecular subtypes (based on bulk RNA sequencing), providing insights into the tumor microenvironment (TME). By examining these pathology images, HistoTME identifies specific cell types in the surrounding tumor tissue, offering valuable information about the patient's unique TME composition. This is crucial for predicting personalized ICI treatment responses, especially in patients with low PD-L1 expression, a key marker commonly used in companion diagnostics. The algorithm was validated on a multi-modal dataset comprising over 650 lung cancer patients and more than 1500 images.

The researchers hope this method will assist doctors in selecting personalized treatment plans with greater accuracy and cost-efficiency, especially for patients without access to expensive molecular testing. Moreover, this test could complement existing companion diagnostics, which often struggle to identify the appropriate patients for the right treatments. The next phase of the study will involve clinical validation of HistoTME, which will further evaluate its effectiveness in real-world clinical environments and may lead to its integration into routine cancer care.

“AI-driven diagnostics and prognostication have the potential to transform the future of healthcare practices and precision oncology,” said Upstate researcher Tamara Jamaspishvili, MD/PhD, who won the "Best Research Poster" Award for Faculty at the Digital Pathology Association's national conference, PathVisions 2024 for her work using AI and computational pathology to improve cancer diagnosis and treatment.

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.