We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Light-Based Technique With 90% Accuracy Rate to Revolutionize Cancer Diagnosis

By LabMedica International staff writers
Posted on 03 Sep 2024
Print article
A schematic of the 3D MM imaging experimental setup used in the studies of blood films (Photo courtesy of Ushenko, A.G., et al.; doi.org/10.1038/s41598-024-63816-z)
A schematic of the 3D MM imaging experimental setup used in the studies of blood films (Photo courtesy of Ushenko, A.G., et al.; doi.org/10.1038/s41598-024-63816-z)

A quicker, cheaper, and less painful cancer detection technique developed using light has the potential to revolutionize cancer diagnosis, early detection, and monitoring.

Researchers at Aston Institute of Photonic Technologies (AiPT, Birmingham, UK) have developed a new technique for analyzing crystals in dehydrated blood. Utilizing a novel polarization-based image reconstruction method, the team examined polycrystalline structures within dried blood samples. This analysis is vital as proteins in the blood undergo structural transformations in their tertiary (unique 3D shape) and quaternary forms (how multiple proteins assemble) during the onset of diseases such as cancer.

The new technique allows for a comprehensive layer-by-layer analysis of dry blood smears, a critical factor in distinguishing between healthy and cancerous samples. The research involved 108 blood film samples divided into three equal groups: healthy individuals, prostate cancer patients, and patients with aggressive cancer cells. The findings published in the Nature journal Scientific Reports showed a 90% accuracy rate in early diagnosis and classification of cancer, surpassing the efficacy of traditional screening methods. Moreover, this approach uses blood samples rather than tissue biopsies, making it a less invasive and safer option for patients.

"Our study introduces a pioneering technique to the liquid biopsy domain, aligning with the ongoing quest for non-invasive, reliable and efficient diagnostic methods,” said AiPT Professor Igor Meglinski. “A key advancement in our study is the characterization of the mean, variance, skewness, and kurtosis of distributions with the cells which is crucial for identifying significant differences between healthy and cancerous samples. This breakthrough opens new avenues for cancer diagnosis and monitoring, representing a substantial leap forward in personalized medicine and oncology."

Related Links:
AiPT

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Hemoglobin/Haptoglobin Assay
IDK Hemoglobin/Haptoglobin Complex ELISA
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.