We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

By LabMedica International staff writers
Posted on 26 Jul 2024
Print article
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death. It holds a 30-day mortality rate of over 30%, which is more than double that of heart attacks. Prompt administration of the correct antibiotic is vital for reducing this high mortality rate. To determine the best treatment, three independent tests are typically required: blood culture to confirm the infection, pathogen identification to pinpoint the specific infecting organism, and antimicrobial susceptibility testing (AST) to identify the most effective antibiotic. Currently, obtaining AST results, which are crucial for selecting the appropriate antibiotic, can take more than 2-3 days. Delays in these results contribute to inappropriate antibiotic use, accelerating the emergence of multidrug-resistant 'superbugs.' While advancements have shortened the timeframe needed for AST, no global progress has been made in reducing the time required for the blood culture process, which is the most time-consuming. Now, an ultra-rapid AST method that bypasses the need for traditional blood culture has demonstrated the potential to reduce the turnaround time of reporting drug susceptibility profiles by more than 40–60 hours compared with hospital AST workflows.

The ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) developed by researchers from the Department of Electrical and Computer Engineering at Seoul National University (Seoul, Korea), in collaboration with QuantaMatrix Inc. (Seoul, Korea), is the world's first to bypass the lengthy blood culture phase, allowing for the completion of all necessary tests for an effective antibiotic regimen within a single day. The uRAST technology employs nanoparticles coated with immune proteins that specifically bind to pathogens, enabling the direct isolation of these pathogens from a patient's blood. The researchers have also integrated new technologies that rapidly conduct pathogen identification and AST, considerably speeding up the testing process. In a clinical trial involving 190 patients suspected of having sepsis, uRAST delivered complete test results within just 13 hours, slashing 40-60 hours off the time required by traditional diagnostic methods. Moreover, uRAST achieved accuracy levels that meet FDA standards.

Another significant aspect of this research published on July 25th in Nature is the integration of fully automated technology that consolidates all necessary sepsis diagnostics into one streamlined process. Traditionally, each test is performed separately and manually, causing delays—particularly outside of normal laboratory operating hours. For instance, if a blood culture is completed after-hours, further testing must wait until the next day, thus missing the critical window for effective sepsis intervention. This research demonstrated the potential for continuous, 24/7 diagnostic operations by automating the entire sequence of necessary tests for sepsis, significantly improving the prospects for timely patient care.

Related Links:
Seoul National University
QuantaMatrix Inc.

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
PSA Test
Humasis PSA Card
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.