Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Model Detects Cancer at Lightning Speed through Sugar Analyses

By LabMedica International staff writers
Posted on 04 Jul 2024

Glycans, which are structures made up of sugar molecules within cells, can be analyzed using mass spectrometry. This technique is particularly useful because these sugar structures can reveal the presence of various cancer types within cells. However, interpreting the data from mass spectrometry, specifically, the fragmentation patterns of glycans, requires meticulous human analysis. This detailed scrutiny can take from several hours to days per sample and is only reliably performed by a handful of highly skilled experts globally, as it involves complex, learned detective work over many years. This need for expert analysis creates a significant bottleneck in utilizing glycan analysis for applications like cancer detection, especially when numerous samples need examination. Researchers have now introduced an artificial intelligence (AI) model that enhances the ability to detect cancer through sugar molecule analysis, proving to be both quicker and more effective than the traditional semi-manual approaches.

The AI model, named Candycrunch, was trained by researchers at the University of Gothenburg (Gothenburg, Sweden) using a vast database containing over 500,000 examples of various fragmentations and associated structures of sugar molecules. This extensive training has equipped Candycrunch to accurately determine the precise structure of sugars in a sample in 90% of cases, aiming to soon match the accuracy levels seen in the sequencing of other biological sequences like DNA, RNA, and proteins. The AI model described in a scientific article published in Nature Methods automates glycan analysis and completes it in just a few seconds. Moreover, Candycrunch can identify sugar structures that are typically overlooked by human analysts due to their low concentrations. Due to its speed and precision, Candycrunch significantly speeds up the identification of glycan-based biomarkers, which are crucial for diagnosing and predicting cancer. Thus, the model holds promise in aiding researchers to discover new glycan-based biomarkers for cancer.

“We believe that glycan analyses will become a bigger part of biological and clinical research now that we have automated the biggest bottleneck,” said Daniel Bojar, Associate Senior Lecturer in Bioinformatics at the University of Gothenburg.

Related Links:
University of Gothenburg

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Unstirred Waterbath
HumAqua 5
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.