We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

SEBIA

Sebia provides clinical protein electrophoresis equipment and reagents for in-vitro diagnostic testing, including sys... read more Featured Products: More products

Download Mobile App




DNA Testing Assessed in Childhood Sickle-Cell Anemia Diagnosis

By LabMedica International staff writers
Posted on 21 Jul 2022
Print article
Image: Blood film of a patient with sickle cell/β 0 thalassemia compound heterozygosity shows one sickle cell, boat-shaped cells, target cells, three nucleated red cells, anisocytosis, poikilocytosis (Ke Xu, MD)
Image: Blood film of a patient with sickle cell/β 0 thalassemia compound heterozygosity shows one sickle cell, boat-shaped cells, target cells, three nucleated red cells, anisocytosis, poikilocytosis (Ke Xu, MD)

Sickle-cell disease (SCD) is the most common genetic disorder worldwide. SCD patients are homozygous for a recurrent mutation in the HBB-gene resulting in the substitution of a glutamic acid residue with a valine amino acid at position 6 of the beta globin protein (E6V).

The mutated protein, known as HbS, has a different electrical charge, which is exploited for the distinction of HbS from HbA by electrophoresis. The term SCD refers to all different genotypes that cause characteristic clinical syndrome, whereas sickle-cell anemia (SCA), the most prevalent form of SCD, refers to the homozygous form of SS, and the heterozygous compound forms such as S/β-thalassemia, SC disease refer to SCD.

Molecular Geneticists at the KU Leuven and University Hospitals Leuven (Leuven, Belgium) collaborating with their colleagues at the University of Kinshasa (Kinshasa, Democratic Republic of Congo) conducted a cross-sectional study from November 2016 to end October 2017 and 160 patients were included. The diagnosis in these patients was made by clinical suspicion associated with a positive Emmel test, occasionally people received hemoglobin electrophoresis and/or hemoglobin isoelectrofocusing.

For each patient, the team collected blood in two 4 mL EDTA tubes. They obtained a full blood cells count (red blood cells (RBC), white blood cells (WBC), platelets and reticulocytes). Biochemical analyses included lactate dehydrogenase (LDH), bilirubin, serum creatinine, aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Hemoglobin electrophoresis was performed using the automated Minicap (Sebia, Norcross, GA, USA). DNA was extracted by the salting out method, and mutation analysis for the SCA mutation (E6V) was performed. Mutation analysis of the β-globin gene was accomplished by resequencing the coding exons and by Multiplex Ligation-dependent Probe Amplification (MLPA), in patients suspected for compound form of SCD Sβ-thalassemia.

The investigators reported that hemoglobin capillary electrophoresis suggested that 136 (85%) were homozygote SS, 13 (8.1%) were heterozygote (AS), and 11 (6.9%) were homozygote normal (AA). DNA testing confirmed these electrophoresis findings, with the exception of four patients, two AS in electrophoresis were found SS due to recent transfusion, and two SS in electrophoresis were found AS because they have compound heterozygous form S/β 0-thalassemia. The diagnosis of SCA was therefore wrongly ascertained with Emmel test in 15% of patients.

The authors concluded that their study revealed a high proportion of wrongly diagnosed SCA patients in a rural environment in Central Africa, and underlines the importance of a DNA test in addition to Hb electrophoresis in helping to clarify the diagnosis of SCA. Improving the skills of healthcare professionals in the clinical recognition of SCA in children remains a crucial step in the management of SCA, especially in rural area. The study was published on July 12, 2022 in the Journal of Clinical Laboratory Analysis.

Related Links:
KU Leuven and University Hospitals Leuven 
University of Kinshasa 
Sebia 

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Pipet Controller
Stripettor Pro
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.