We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Tear-Based Method Detects Breast Cancer

By LabMedica International staff writers
Posted on 11 May 2022
Print article
Image: a) Schematic of Tear Collection using Schirmer strip before being analyzed by LC-MS/MS and validated by ELISA. b) Functional classification of 301 mapped proteins in tear samples using PANTHER classification system (Photograph courtesy of Namida Lab)
Image: a) Schematic of Tear Collection using Schirmer strip before being analyzed by LC-MS/MS and validated by ELISA. b) Functional classification of 301 mapped proteins in tear samples using PANTHER classification system (Photograph courtesy of Namida Lab)

With advances in screening techniques, and adjustment of recommended screening guidelines, mortality rates due to breast cancer continue to decline. Despite the estimated waning in mortality rates, breast cancer still remains the highest cancer diagnosis of women globally.

With continued advancement in biomarker identification techniques, there is increasing interest in finding markers of disease in non-traditional biological fluids. Breast cancer associated biomarkers have been identified in urine, nipple fluid aspirate, as well as breast milk. Tear fluid is one of the most underrated biofluids that has been gaining interest in recent years.

Scientist at the Namida Lab Inc (Fayetteville, AR, USA) and their medical colleagues examined the ocular proteome to identify protein biomarkers with altered expression levels in women diagnosed with breast cancer. They collected tear samples from 273 participants using Schirmer strip collection methods.

Following protein elution, proteome wide trypsin digestion with liquid chromatography/tandem mass spectrometry (LC-MS/MS) was used to identify potential protein biomarkers with altered expression levels in breast cancer patients. MS/MS analysis using collision-induced dissociation on an LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). MS data was acquired using the FTMS analyzer in profile mode at a resolution of 60,000 over a range of 375 to 1500 m/z. Selected biomarkers were further validated by enzyme linked immunosorbent assay (ELISA). Standard sandwich ELISA procedures using DuoSets ELISA kits (R&D Systems, Minneapolis, MN, USA) were used to evaluate the expression level of S100A8 (SA8), S100A9 (SA9), and Galectin-3-Binding Protein (LG3BP) in tear samples

The investigators reported that a total of 102 individual tear samples (51 breast cancer, 51 control) were analyzed by LC-MS/MS which identified 301 proteins. Spectral intensities between the groups were compared and 14 significant proteins were identified as potential biomarkers in breast cancer patients. Three biomarkers, S100A8, (7.8-fold increase), S100A9, (10.2-fold increase), and Galectin-3 binding protein ( 3.0-fold increase) with an increased expression in breast cancer patients were selected for validation using ELISA.

Validation by ELISA was conducted using 171 individual tear samples (75 Breast Cancer and 96 Control). Similar to the observed LC-MS/MS results, S100A8 and S100A9 showed significantly higher expression in breast cancer patients. However, galectin-3 binding protein had increased expression in the control group.

The authors concluded that their results provided further support for using tear proteins to detect non-ocular systemic diseases such as breast cancer. The work provided crucial details to support the continued evaluation of tear samples in the screening and diagnosis of breast cancer and paves the way for future evaluation of the tear proteome for screening and diagnosis of systemic diseases. The study was published on April 26, 2022 in the journal PLOS ONE.

Related Links:
Namida Lab Inc 
Thermo Fisher Scientific 
R&D Systems 

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Amoebiasis Test
ELI.H.A Amoeba
New
Creatine Kinase-MB Assay
CK-MB Test

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.