Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Next Generation Sequencing Finds More Gene Mutations for Leukemia

By LabMedica International staff writers
Posted on 18 Feb 2021
Myeloid malignancies are characterized by uncontrolled proliferation and/or defects in differentiation of abnormal myeloid progenitor cells. More...
Myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPNs) are often thought to be precursors to a higher grade myeloid malignancies, namely acute myeloid leukemia (AML).

Many laboratories have used relatively small targeted panels that screen prominent mutation hotspots in less than 50 genes. Although this approach is cost- and time- effective with minimal data analysis and reporting complexity, it yields an incomplete mutational profile, omitting several important known hotspot mutations.

Pathologists at the Medical College of Georgia (Augusta, GA, USA) included 40 patient with myeloid neoplasms samples in a study, clinical information was available on 27 patients. The investigators retrospectively analyzed 61 bone marrow samples. DNA was isolated from bone marrow aspirates using the QIAamp DNA Blood Mini kit (QIAGEN, Hilden, Germany). Nanodrop spectrophotometer was used to analyze the DNA quality with an OD 260/280 value between 1.7 and 2.2 being considered acceptable.

Double stranded DNA was measured using Qubit dsDNA broad range assay kit (Invitrogen, Carlsbad CA, USA) and 120 ng gDNA was used for library preparation. The team evaluated the clinical performance and utility of a comprehensive 523 gene NGS panel (Illumina, San Diego, CA, USA) for screening myeloid neoplasms. The high-throughput comprehensive Next-Generation Sequencing (NGS) panel was validated for single-nucleotide variants (SNVs) and indels/duplications in myeloid neoplasms.

The scientists reported the larger panel identified 880 variants in 292 genes, and only 14.8% of the variants were in genes included in the smaller 54-gene panel currently in use by many laboratories. The remaining 749 variants are not typically assessed in a leukemia diagnosis or detected by the 54-gene panel. When they looked at the information available on those 749 variants in follow up, they found at least 14 of the variants in 10 genes likely could contribute to AML and 96.2% of the patients had at least one of the 14 novel variants. They also found 22 variants in five other genes associated with other tumor types in the vast majority of the patients with AML.

The authors concluded that the comprehensive panel employed in their study, demonstrated its ease of use and clinical utility for myeloid neoplasms. The panel has extensive coverage across the entire genome, for variants significantly beyond those captured on existing NGS platforms for hematological malignancies. The study was originally published on October 19, 2020 in the journal PLOS ONE.


Related Links:
Medical College of Georgia
Qiagen
Invitrogen
Illumina



Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit
New
Cytomegalovirus Test
NovaLisa Cytomegalovirus (CMV) IgG Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.