We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Saliva-based Test Detects Infectious Subclinical Malaria

By LabMedica International staff writers
Posted on 27 Feb 2019
Print article
Image: A male and a female gametocyte of Plasmodium falciparum (Photo courtesy of Professor David Baker).
Image: A male and a female gametocyte of Plasmodium falciparum (Photo courtesy of Professor David Baker).
Low-density subclinical infection with Plasmodium falciparum among defined population subsets has been shown to be an important but cryptic facet of malaria transmission. Typically, these individuals are not readily detected by currently available point-of-need (PON) rapid diagnostic tests (RDTs) or microscopy.

The use of blood for screening campaigns substantially increases the inherent risk to both the screener and the individual (patient), and complicates the logistics, training requirements, and efficiency of the surveillance effort. Recently, it has been shown that parasite or pathogen biomarkers can enter into other biofluids, specifically urine and saliva.

An international team of scientists working with the Johns Hopkins Malaria Research Institute (Baltimore, MD, USA) developed a prototype antibody-based lateral flow immunoassay (LFIA) rapid test that validated the presence of the marker in saliva from children with subclinical infection, revealing an underappreciated amount of subclinical carriage in two malaria-endemic countries. The team performed a cross-sectional, multi-omics study of saliva from 364 children with subclinical infection in Cameroon and Zambia and produced a prototype saliva-based point-of-need (PON) lateral flow immunoassay test for P. falciparum gametocyte carriers.

The investigators performed a competitive profiling study using a liquid chromatography–multiple reaction monitoring (LC-MRM) mass spectrometry (MS) approach to estimate the prevalence of the candidate marker in the saliva of children with subclinical infection in Cameroon and Zambia and compared to microscopy and polymerase chain reaction (PCR) analyses of matched blood samples. The scientists detected in the pooled saliva from the children 35 proteins and PF3D7_1218800 was the most abundant in individual saliva samples from children who were found to be gametocyte positive by blood film microscopy.

The authors concludes that the identification of other parasite-derived antigens in the saliva such as PF3D7_0507800 and PF3D7_0906100, both of which are shared between gametocytes and asexual stages, can lead the way to an optimized, highly sensitive saliva-based RDT for both clinical studies and clinical settings. The test is capable of identifying submicroscopic carriage in both clinical and nonclinical settings and is compatible with archived saliva samples. The study was published on January 2, 2019, in the journal Science Translational Medicine.

Related Links:
Johns Hopkins Malaria Research Institute

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
H-FABP Assay
Heart-Type Fatty Acid-Binding Protein Assay
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.