Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Low Cost Device Helps Diagnose Pancreatic Cancer

By LabMedica International staff writers
Posted on 20 Feb 2014
A low-cost device has been developed that could help pathologists diagnose pancreatic cancer earlier and faster.

The prototype microfluidic device can perform the basic steps for processing a biopsy, relying on fluid transport instead of human hands to process the tissue. More...


Scientists and engineers at the University of Washington (Seattle, WA, USA) have developed instrumentation that would essentially automate and streamline the manual, time-consuming process a pathology laboratory goes through to diagnose cancer. The technology would process and analyze whole tissue biopsies for three-dimensional (3-D) imaging, which offers a more complete picture of the cellular makeup of a tumor.

The team built a thick, credit card-sized, flexible device out of silicon that allows a piece of tissue to pass through tiny channels and undergo a series of steps that replicate what happens on a much larger scale in a pathology laboratory. The device harnesses the properties of microfluidics, which allows tissue to move and stop with ease through small channels without needing to apply a lot of external force. It also saves clinicians from having to handle the actual specimen as a tissue biopsy taken with a syringe needle could be deposited directly into the device to begin processing.

The investigators say this is the first time material larger than a single-celled organism has successfully moved in a microfluidic device. This could have implications across the sciences in automating analyses that usually are done by humans. The team first built a mold using a petri dish and Teflon tubes, and then poured a viscous, silicon material into the mold. The result is a small, transparent instrument with seamless channels that are both curved and straight.

Ronnie Das, PhD, the lead author of the study said, “As soon as you cut a piece of tissue, you lose information about it. If you can keep the original tissue biopsy intact, you can see the whole story of abnormal cell growth. You can also see connections, cell morphology and structure as it looks in the body.” The technology could be used overseas as a kit that would process biopsies, and then send that information to pathologists who could look for signs of cancer from remote locations.
Additionally, it could potentially reduce the time it takes to diagnose cancer to a matter of minutes. The study was presented at the International Society for Optics and Photonics (SPIE Photonics West) conference held February 1-6, 2014, in San Francisco (CA, USA).

Related Links:

University of Washington



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.