We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mosaic Confocal Microscopy Technique Speeds Up Skin Cancer Surgery

By LabMedica International staff writers
Posted on 12 Feb 2014
Print article
Image: Comparison of residual cancer detected with the new confocal imaging technique and the currently used freezing and staining technique (Photo courtesy of Dr. Milind Rajadyhyaksha, Memorial Sloan-Kettering Cancer Center).
Image: Comparison of residual cancer detected with the new confocal imaging technique and the currently used freezing and staining technique (Photo courtesy of Dr. Milind Rajadyhyaksha, Memorial Sloan-Kettering Cancer Center).
A new and faster optical approach called strip mosaicing confocal microscopy was recently developed to reduce the time required to perform Mohs surgery for the removal of malignant skin cancers.

Mohs surgery, also called Mohs micrographic surgery, is a precise surgical technique that is used to remove all parts of cancerous skin tumors while preserving as much healthy tissue as possible. Mohs surgery is used to treat such skin cancers as basal cell and squamous cell carcinomas.

Investigators at Memorial Sloan Kettering Cancer Center (New York, NY, USA) were funded by a grant from the [US] National Institute of Biomedical Imaging and Bioengineering (Bethesda, MD, USA) to develop a microscopy method to rapidly analyze tissues during the Mohs procedure.

The investigators developed a new pathological assessment technique called strip mosaicing confocal microscopy that employed a focused laser line to perform multiple scans of tissue excised during Mohs surgery to obtain image “strips” that were then combined, like a mosaic, into a complete image of the tissue. The process required only 90 seconds and eliminated the need to freeze and stain the tissue samples for analysis— a process that takes 20 to 45 minutes.

In a study, tissue samples from 17 Mohs cases were imaged in the form of strip mosaics. Each mosaic was divided into two halves (submosaics) and graded by a Mohs surgeon and a dermatologist who were blinded to the pathology. The 34 submosaics were compared with the corresponding Mohs pathology. Results revealed that the overall image quality was excellent for resolution, contrast, and stitching. Components of normal skin including the epidermis, dermis, dermal appendages, and subcutaneous tissue were easily visualized. The preliminary measures of sensitivity and specificity were both 94% for detecting skin cancer margins.

Dr. Steve Krosnick, director of the program for image-guided interventions at the [US] National Institute of Biomedical Imaging and Bioengineering, said, “The technology is particularly well-suited for Mohs-trained surgeons, who are experts at performing excisions and interpreting images of tissue samples removed during the Mohs procedure. Image quality, ability to make accurate interpretations, and time savings will be key parameters for adoption of the system in the clinical setting, and the current results are very encouraging.”

The study was published in the October 2013 issue of the British Journal of Dermatology.

Related Links:

Memorial Sloan Kettering Cancer Center
National Institute of Biomedical Imaging and Bioengineering


New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test
New
Pipet Controller
Stripettor Pro

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.