Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanopore-Based Tool Detects Disease with Single Molecule

By LabMedica International staff writers
Posted on 03 Jan 2025

Detecting diseases typically requires identifying millions of molecules. More...

The molecules targeted for detection—such as specific DNA or protein molecules—are extremely small, about one-billionth of a meter in size. As a result, the electrical signals they generate are tiny and require specialized equipment for accurate detection. Scientists have now developed a nanopore-based technology that could revolutionize disease diagnosis by capturing signals from individual molecules, enabling faster and more precise testing than current methods.

Researchers at UC Riverside (Riverside, CA, USA) are working on creating electronic sensors that mimic the behavior of neurons in the brain, capable of "remembering" molecules that have previously passed through the sensor. To achieve this, the team designed a new circuit model that detects small changes in the sensor's behavior. Central to their circuit is a nanopore, an extremely small opening that allows molecules to pass through one at a time. Biological samples are introduced into the system along with salts that break down into ions. When DNA or protein molecules from the sample pass through the nanopore, they cause a reduction in the flow of ions. To process the resulting electrical signals, the system must account for the possibility that some molecules might not be detected as they move through the nanopore.

What sets this discovery apart is that the nanopore not only functions as a sensor but also acts as a filter, minimizing background noise from other molecules that could interfere with detecting critical signals. Traditional sensors require external filters to eliminate unwanted signals, but these filters can unintentionally remove valuable information. The new technology ensures that every molecule's signal is retained, thereby enhancing the accuracy of diagnostic applications. The team at UCR envisions the technology being used to create a compact, portable diagnostic device—roughly the size of a USB drive—that could detect infections at their earliest stages. Unlike current tests, which may take days to detect infections, nanopore sensors could identify them within 24 to 48 hours, offering a significant advantage in diagnosing fast-spreading diseases and enabling earlier treatment.

Apart from diagnostics, this device also holds promise for advancing protein research. Proteins play critical roles in cell function, and even small structural changes can impact health. Current diagnostic tools struggle to differentiate between healthy proteins and disease-causing ones due to their similar structures. However, the nanopore technology can detect subtle differences between individual proteins, which could help physicians create more personalized treatments. Additionally, this research brings scientists closer to achieving single-molecule protein sequencing, a long-sought biological goal. While DNA sequencing reveals genetic information, protein sequencing provides insight into how that genetic information is expressed and modified in real time. This deeper understanding could lead to earlier disease detection and more targeted, personalized therapies.

“Right now, you need millions of molecules to detect diseases. We’re showing that it’s possible to get useful data from just a single molecule. This level of sensitivity could make a real difference in disease diagnostics,” said Kevin Freedman, assistant professor of bioengineering at UCR and lead author of a paper about the tool in Nature Nanotechnology. “Nanopores offer a way to catch infections sooner—before symptoms appear and before the disease spreads. This kind of tool could make early diagnosis much more practical for both viral infections and chronic conditions.”


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Specimen Radiography System
TrueView 200 Pro
New
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.