We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Noninvasive Test Detects Malaria Without Blood Sample

By LabMedica International staff writers
Posted on 30 Oct 2024

Malaria remains a significant global health issue, with approximately 250 million cases and over 600,000 deaths reported annually. More...

Nearly half of the world's population is at risk for malaria infection, particularly vulnerable groups such as children and pregnant women, who face the highest likelihood of severe illness and death from the disease. Currently, detecting this potentially fatal infection typically requires invasive blood samples, and existing testing methods have considerable limitations that hamper their effectiveness. A new technology now presents an exciting point-of-care (POC) diagnostic tool that has the potential to improve malaria detection and facilitate timely treatment.

Researchers at Yale School of Public Health (New Haven, CT, USA) and their collaborators have introduced a novel noninvasive test that could significantly transform malaria testing in low- and middle-income countries that are heavily impacted by this mosquito-borne illness. The innovative test does not require any blood samples, making it safer and more accessible. It utilizes a device called the Cytophone, which employs targeted lasers and ultrasound to identify malaria-infected cells in the bloodstream. Roughly the size of a tabletop printer, the Cytophone prototype can quickly ascertain the presence of malaria infection through a small, noninvasive probe applied to the back of a patient’s hand over a targeted vein.

The Cytophone's ability to detect infections noninvasively is made possible due to the accumulation of a by-product known as hemozoin in red blood cells infected with malaria parasites. This iron crystal by-product absorbs more light than normal hemoglobin when exposed to laser light, heating up and displaying magnetic and optical properties that the Cytophone probe can identify. In research published in Nature Communications, the team evaluated the Cytophone on 20 adult patients diagnosed with symptomatic malaria in Cameroon. The device successfully identified Plasmodium falciparum, the most prevalent and lethal malaria parasite, along with other less common species. The findings demonstrated that the Cytophone is sensitive enough to detect both high and low levels of parasites in infected blood, achieving 90% sensitivity and 69% specificity—comparable to, and in some cases exceeding, current gold standards for malaria testing that necessitate blood draws. Additionally, the device was capable of tracking the reduction of parasite levels when patients were retested post-treatment.

“Our study showed that the Cytophone was safe and had comparable diagnostic performance to current point-of-care options when compared to highly sensitive quantitative PCR as the gold standard,” said Jillian N. Armstrong, one of the study’s lead authors.


New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Automated Biochemical Analyzer
iBC 900
New
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.