We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Abbott Diagnostics- Hematology Division

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
20 Oct 2021 - 22 Oct 2021
21 Oct 2021 - 24 Oct 2021
Virtual Venue

Highly Multiplexed Cell Surface Protein Analyzed Via Flow Cytometry

By LabMedica International staff writers
Posted on 06 Oct 2021
Print article
Image: The BD LSRFortessa X-20 Cell Analyzer can be configured with up to five lasers to detect up to 20 parameters simultaneously to support ever increasing demands in multicolor flow cytometry (Photo courtesy of BD Biosciences)
Image: The BD LSRFortessa X-20 Cell Analyzer can be configured with up to five lasers to detect up to 20 parameters simultaneously to support ever increasing demands in multicolor flow cytometry (Photo courtesy of BD Biosciences)
Modern immunologic studies increasingly requires high-dimensional analyses to understand the complex milieu of cell types that comprise the tissue microenvironments of disease. One of the cornerstones of immunology has been the detailed phenotypic classification of the cellular populations of the immune system.

Modern flow cytometric approaches exemplify this by using panels of multiple fluorochrome-conjugated (conventional flow cytometry) or metal-conjugated (mass cytometry) antibodies to measure protein expression profiles of individual cells with high cell throughput to capture and analyze both common and rare cell populations.

Clinical Scientists at the Fred Hutchinson Cancer Institute (Seattle, WA, USA) developed a workflow that enables highly multiplexed analysis of cell surface proteins using conventional flow cytometry. The method uses machine learning combined with data from overlapping flow cytometry assay panels to determine the co-expression patterns of hundreds of cell surface markers across millions of single cells.

The approach, named Infinity Flow, uses traditional flow cytometry as opposed to newer technologies like mass cytometry; it offers a potentially more accessible and less expensive route for single-cell proteomic studies. The method consists of two steps. First, the scientists stain all the cells in an experiment with antibodies to a small number of proteins. This is called the "backbone" panel and typically consists of around the 20 analytes that can be multiplexed using a conventional flow cytometer.

The scientists then subdivide the sample into a series of wells, each containing one of the additional antibodies to the proteins they are interested in. For instance, if the investigator want to look at another 200 proteins beyond those covered in the backbone panel, they would subdivide their sample into 200 different wells, each of which would contain an antibody against one of those 200 proteins. They then analyze each well of samples using flow cytometry, the BD Fortessa X-20 cytometer (BD Biosciences, Franklin Lakes, NJ, USA) allowing them to collect for each cell expression data on all of the "backbone" proteins along with data on the one additional protein designated for that sample well. With this data, the Infinity Flow software is able to predict for every cell being analyzed the expression levels of the 200 proteins of interest.

The team found that when they used a backbone panel of proteins common to all T cells, they were unable to impute protein expression levels for particular T-cell types due to the fact that, based on the backbone signature, all T cells looked the same. This, they noted, indicates that tailoring backbone panels to the samples and cell populations of interest can improve the assay's performance. They also found that the method was best able to impute expression levels for proteins that exhibited multimodal expression patterns and were highly or commonly expressed. In an evaluation of an Infinity Flow assay detailed in the study, they determined that they were able to generate "meaningful imputed signal" for 155 of 252 markers measured.

Mark Headley, PhD, an assistant professor in immunology and a leading author of the study, said, “Infinity Flow costs scale more slowly. We can measure 10 million, 20 million, 30 million cells at the same cost. It doesn't cost you more to do the assay the more cells you do.” The study was published on September 22, 2021 in the journal Science Advances.

Related Links:
Fred Hutchinson Cancer Institute
BD Biosciences



New
Gold Supplier
SARS-CoV-2 S-IgG Antibody Assay
Lumipulse G SARS-CoV-2 S-IgG
New
Respiratory Multiplex RT-PCR Kit
Respiratory Multiplex RT-PCR Kit
New
Gold Supplier
BMP Whole Blood Analyzer
GEM Premier ChemSTAT
New
Silver Supplier
Quality Control Material
Multichem U

Print article

Channels

Clinical Chem.

view channel
Image: Simoa is an ultra-sensitive immunoassay technology that allow detection of proteins and nucleic acids at lowest possible levels (Photo courtesy of Quanterix)

Plasma Amyloid-β 42/40 Assays Compared in Alzheimer Disease

Blood-based tests for brain amyloid-β (Aβ) pathology are needed for widespread implementation of Alzheimer disease (AD) biomarkers in clinical care and to facilitate patient screening and monitoring of... Read more

Molecular Diagnostics

view channel
Image: The QuikRead go iFOBT is an immunochemical fecal immunochemical test for detection and quantification of human hemoglobin in feces in case of suspected bleeding from the lower gastrointestinal tract (Photo courtesy of Aidian)

Fecal Immunochemical Tubes Sourced to Analyze Gut Microbiome for CRC

Colorectal cancer (CRC) is a challenging public health problem which successful treatment depends on the stage at diagnosis. Recently, CRC-specific microbiome signatures have been proposed as a marker... Read more

Hematology

view channel
Image: Bone marrow aspirate from a patient with peripheral T-cell lymphoma (Photo courtesy of Peter Maslak, MD)

Mutation Analysis Links Angioimmunoblastic T-Cell Lymphoma to Clonal Hematopoiesis

Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of lymphoid tumors and encompass peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), angioimmunoblastic T-cell lymphoma (AITL), and... Read more

Pathology

view channel
Image: Characteristic bronchoalveolar lavage findings of diffuse alveolar hemorrhage (Photo courtesy of Peter C. Bauer, MD)

Bronchoalveolar Lavage Cell Pattern Determined for Diffuse Alveolar Hemorrhage

Diffuse alveolar hemorrhage (DAH) is a clinicopathological syndrome that describes the accumulation of intra-alveolar red blood cells originating from the alveolar capillaries. DAH can induce severe respiratory... Read more

Industry

view channel
Image: GastroPanel Quick Test (Photo courtesy of Biohit Healthcare)

Biohit’s Innovative GastroPanel Quick Test Receives CE Mark

Biohit Healthcare’s (Helsinki, Finland) GastroPanel Quick Test, the latest innovation in its unique GastroPanel product family, is now CE marked. The GastroPanel Quick Test is intended for diagnosing... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.