We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GENRUI BIOTECH INC.

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
04 May 2021 - 07 May 2021
Virtual Venue

Microfluidic Label-Free Bioprocessing of Reticulocytes from Erythroid Culture

By LabMedica International staff writers
Posted on 30 Sep 2020
Print article
Image: Laboratory set-up of microfluidic sorting and purification of cells during red blood cell culture and manufacturing (Photo courtesy of Singapore-MIT Alliance for Research and Technology).
Image: Laboratory set-up of microfluidic sorting and purification of cells during red blood cell culture and manufacturing (Photo courtesy of Singapore-MIT Alliance for Research and Technology).
Blood transfusions save millions of lives every year, but over half the world's countries do not have sufficient blood supply to meet their needs. The ability to manufacture red blood cells (RBCs) on demand, especially the universal donor blood (O+), would significantly benefit those in need of transfusion.

Easier and faster manufacturing of RBCs would also have a significant impact on blood banks worldwide and reduce dependence on donor blood which has a higher risk of infection. Reticulocytes are nucleus-free, immature RBCs originating from self-renewing hematopoietic stem and progenitor cells (HSPCs) within the bone marrow.

An international team of scientists led by those at the Singapore-MIT Alliance for Research and Technology (Singapore) developed novel purification and sorting methods by modifying existing Dean Flow Fractionation (DFF) and Deterministic Lateral Displacement (DLD); developing a trapezoidal cross-section design and microfluidic chip for DFF sorting, and a unique sorting system achieved with an inverse L-shape pillar structure for DLD sorting.

These new sorting and purification techniques using the modified DFF and DLD methods leverage the RBC's size and deformability for purification instead of spherical size. As most human cells are deformable, this technique can have wide biological and clinical applications such as cancer cell and immune cell sorting and diagnostics. The team used many techniques including that on day 23 of erythroid culture, cells were stained in a batch of 50 million cells and maximum total of 200 million cells at once for sorting by BD ARIA II (BD Biosciences, San Jose, CA, USA).

On testing the purified RBCs, they were found to retain their cellular functionality, as demonstrated by high malaria parasite infectivity which requires highly pure and healthy cells for infection. This confirms SMART's new RBC sorting and purifying technologies are ideal for investigating malaria pathology.

Compared with conventional cell purification by fluorescence-activated cell sorting (FACS), SMART's enhanced DFF and DLD methods offer comparable purity while processing at least twice as many cells per second at less than a third of the cost. In scale-up manufacturing processes, DFF is more optimal for its high volumetric throughput, whereas in cases where cell purity is pivotal, DLD's high precision feature is most advantageous.

Kerwin Kwek Zeming, PhD, a Bioengineer and lead author of the study, said, “Traditional methods for producing human RBCs usually require 23 days for the cells to grow, expand exponentially and finally mature into RBCs. Our optimized protocol stores the cultured cells in liquid nitrogen on what would normally be Day 12 in the typical process, and upon demand thaws the cells and produces the RBCs within 11 days. Our novel sorting and purification methods result in significantly faster cell processing time and can be easily integrated into current cell manufacturing processes. The process also does not require a trained technician to perform sample handling procedures and is scalable for industrial production.” The study was originally published on September 14, 2020 in the journal Lab on a Chip.

Related Links:
Singapore-MIT Alliance for Research and Technology
BD Biosciences


Gold Supplier
SARS-CoV-2 (COVID-19) Antibody Test
INgezim COVID 19 CROM
New
Gold Supplier
SARS-CoV-2 Antibody Test
SARS-CoV-2 UTAB FS
New
Gold Supplier
COVID-19 Coronavirus and Influenza A/B Virus Real Time PCR Kit
COVID-19 Coronavirus and Influenza A/B Virus Real Time PCR Kit
Hematology Analyzer
DxH 560 AL

Print article
BIOHIT  Healthcare OY

Channels

Molecular Diagnostics

view channel
Image: Randox Discovery Diagnostic Analyzer Wins 2021 Red Dot Award for High Design Quality (Photo courtesy of Randox Laboratories)

Randox Discovery Diagnostic Analyzer Wins 2021 Red Dot Award for High Design Quality

Randox Laboratories’ (Crumlin, UK) Discovery, a diagnostic analyzer which can consolidate molecular and immunoassay testing on one compact benchtop platform, has received the 2021 Red Dot Award for High... Read more

Industry

view channel
Image: Eppendorf Centrifuge 5910 Ri (Photo courtesy of Eppendorf AG)

Eppendorf Introduces Multipurpose Centrifuge 5910 Ri to Accelerate Results

Eppendorf AG (Hamburg, Germany) has introduced a new centrifuge designed to increase efficiency in the laboratory, Centrifuge 5910 Ri, a successor to the company’s popular Centrifuge 5910 R.... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.