We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




A Novel Liquid Biopsy Device Enables Early Cancer Detection and Diagnosis

By LabMedica International staff writers
Posted on 22 Jun 2020
Print article
Image: The multi-layer EV-CLUE chip device. The microreactors and connecting channels are visualized by filling with blue food dye. The bottom glass slide is patterned with nanoparticle structures and coated with antibody to capture extracellular vesicles (Photo courtesy of Dr. Yong Zeng)
Image: The multi-layer EV-CLUE chip device. The microreactors and connecting channels are visualized by filling with blue food dye. The bottom glass slide is patterned with nanoparticle structures and coated with antibody to capture extracellular vesicles (Photo courtesy of Dr. Yong Zeng)
A novel liquid biopsy device for early cancer detection and diagnosis was used to isolate and analyze extracellular vesicles from breast cancer tumors.

Evidence has accumulated, which indicates that extracellular vesicles (EVs) have important functions in tumor progression and metastasis, including matrix remodeling via transporting matrix metalloproteases (MMPs).

Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes, such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes, such as arthritis and metastasis.

In the meantime, the clinical relevance of EVs has remained largely undetermined, partially owing to challenges in EV analysis. EVs, which contain RNA, proteins, lipids, and metabolites that are reflective of the cell type of origin, are increasingly being recognized as important vehicles of communication between cells and as promising diagnostic and prognostic biomarkers in cancer. Despite this huge clinical potential, the wide variety of methods for separating EVs from biofluids, which provide material of highly variable purity, and the lack of knowledge regarding methodological reproducibility have impeded the entry of EVs into the clinical arena.

To open up the clinical potential for analysis of EVs, investigators at the University of Kansas (Lawrence, USA) developed a generalized, high-resolution colloidal inkjet printing method that allowed robust and scalable manufacturing of three-dimensional nanopatterned devices. These nanopatterned polydimethylsiloxane/glass microfluidic chips (EV-CLUE chips) were used to analyze EVs in plasma. The chips captured EVs expressing different surface markers of interest and measured the expression and activity of the EV-bound enzyme MMP14.

The EV-CLUE chip is a multi-layer device constructed by stacking two slabs made of polydimethylsiloxane (PDMS) on a glass slide. The top PDMS slab was microfabricated with a network of pressure/vacuum valves and pump that controlled the circuit of eight parallel microreactors engraved on the middle thin PDMS layer. The bottom glass slide was patterned with nanoparticle structures and coated with antibody to capture extracellular vesicles.

Analysis of clinical plasma specimens showed that EV-CLUE technology could be used for cancer detection including accurate classification of age-matched controls and patients with ductal carcinoma in situ, invasive ductal carcinoma, or locally metastatic breast cancer in a training cohort (n = 30, 96.7% accuracy) and an independent validation cohort (n = 70, 92.9% accuracy).

The investigators expect that their EV-CLUE technology will provide a useful liquid biopsy tool to improve cancer diagnostics and real-time surveillance of tumor evolution in patients, which would be another step on the road to truly personalized cancer therapy.

The EV-CLUE device was described in the June 10, 2020, online edition of the journal Science Translational Medicine.

Related Links:
University of Kansas

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Malondialdehyde HPLC Test
Malondialdehyde in Serum/Plasma – HPLC
New
Unstirred Waterbath
HumAqua 5

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.