We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




POC Test Based on Quantum Dots Detects Antibody Responses

By LabMedica International staff writers
Posted on 31 Oct 2019
Print article
Image: The Holomics Reader HRDR-300 mobile device was used to measure fluorescent intensity of the quantum dots complex after lateral migration of patient serum (Photo courtesy of Medical College of Georgia).
Image: The Holomics Reader HRDR-300 mobile device was used to measure fluorescent intensity of the quantum dots complex after lateral migration of patient serum (Photo courtesy of Medical College of Georgia).
Point-of-care (POC) assays, which can be performed at or near the site of care with a rapid turnaround time, are pivotal to transforming global disease control efforts, particularly in resource-constrained settings where access to laboratory facilities is limited.

Cysticercosis is an infection caused by the larval form of the pork tapeworm Taenia solium. When larval cysts form in the human brain known as neurocysticercosis (NCC), they can result in seizures and other neurologic disorders. NCC affects those living in endemic and non-endemic countries, with an estimated more than 18,000 hospitalizations in the USA between 2003 and 2012.

Medical scientists at the Medical College of Georgia (Athens, GA, USA) and their international colleagues examined 112 positive human sera from patients with neurocysticercosis (NCC) including samples from 18 patients with single viable cyst, 71 patients with two or more viable cysts, and 23 patients with subarachnoid (racemose) cysts. Definitive diagnosis of the subject was established by computed-tomography and/or magnetic resonance imaging.

To test the specificity of the assay, the team evaluated a panel of serum samples obtained from 24 patients with other infections and 128 serum samples from persons in the USA and Egypt who had not traveled outside their country, and therefore were presumed negative for cysticercosis. The scientists developed a novel and portable fluorescent sensor that integrates a lateral flow assay with a quantum dot (Qdots) label and a mobile phone reader for detection of specific antibodies in human serum. They evaluated the utility of this assay to test for antibodies to the Taenia solium rT24H antigen.

The team read the lateral flow assay after 30 minutes, using the Holomics Reader HRDR-30. The investigators reported that the assay specificity in the negative panel was 99% (95%–100%) while assay sensitivity was 89% (79%–95%) in NCC patients with two or more viable cysts. The assay has performance characteristics similar to those of traditional platforms for the detection of NCC and shows promise as a mobile phone reader-based point-of-care test for antibody detection. The study was published on October 7, 2019, in the journal PLOS Neglected Tropical Diseases.

Related Links:
Medical College of Georgia

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Fixed Speed Tube Rocker
GTR-FS
New
PSA Test
Humasis PSA Card

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.