We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Randox Laboratories

Provides global diagnostic solutions for hospital laboratories, forensic laboratories, research laboratories, pharmac... read more Featured Products: More products

Download Mobile App




Randox Unveils an Assay for the Rapid Measurement of Small Dense LDL Cholesterol (sdLDL-C)

By LabMedica International staff writers
Posted on 13 May 2019
A kit for the automated measurement of small dense low-density lipoprotein cholesterol (sdLDL-C) is now available with dedicated controls and calibrators available and instrument-specific applications for use with a wide range of biochemistry analyzers.

The lipid panel often used to assess cardiovascular disease risk comprises LDL cholesterol, HDL cholesterol, total cholesterol, and triglycerides. More...
Results of these assays only detect about 20% of all atherosclerotic cardiovascular disease patients. However, studies have shown that sdLDL-C could predict risk of coronary heart disease in individuals considered being at low cardiovascular risk based on their LDL-C levels. These studies found that patients with a predominance of sdLDL-C had a three-fold increased risk of myocardial infarction (MI), while the relative risk was 4.5 for coronary artery disease and 7.0 for MI when sdLDL-C levels were greater than 100 milligrams per deciliter.

Until recently, the primary methods for determining a patient's sdLDL-C levels were based on laborious and time-consuming ultracentrifugation and electrophoresis. Then, in November 2017, the [U.S.] Food and Drug Administration granted 510(k) marketing clearance to Denka Seiken (Tokyo, Japan) for a small dense low-density lipoprotein cholesterol (sdLDL-C) assay designed for use on any standard clinical chemistry analyzer. The assay quantified sdLDL-C in serum and plasma samples in 10 minutes using a two-step process. The first step removed chylomicrons, very low LDL, intermediate-density lipoprotein, large LDL, and high-density lipoprotein using a surfactant and sphingomyelinase. In the second step, a specific surfactant released cholesterol only from the sdLDL-C particles for measurement by standard methods.

The Randox (Crumlin, United Kingdom) sdLDL-C assay utilizes the Denka Seiken method, providing accurate patient results. It was designed for use on automated biochemistry analyzers for efficiency and convenience. Applications are available detailing instrument-specific settings for the convenient use of the Randox sdLDL-C assay on a wide range of biochemistry analyzers. Dedicated sdLDL-C controls and calibrator are available providing a complete testing package. The Randox sdLDL-C assay is a niche product, and Randox is one of the only manufacturers of this test in an automated format.



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Hemodynamic System Monitor
OptoMonitor
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.